
LinearOperator — a generic, high-level
expression syntax for linear algebra

Matthias Maier∗, Mauro Bardelloni†, Luca Heltai†

We introduce an expression syntax for the evaluation of matrix-matrix, matrix-vector and
vector-vector operations. The implementation is similar to the well-known general concept
of expression templates as used, for example, in the C++ linear-algebra libraries Eigen and
Blaze. The novelty of the approach that is discussed here lies in the use of new C++11
features like lambda expressions and std::function objects that avoids the majority of the
implementational complexity that usually comes with a pure template solution.

A concrete implementation of the expression syntax has been developed within the frame-
work of the finite-element library deal.II, but it is fairly generic: the LinearOperator imple-
mentation only requires a minimal vector and matrix interface, that all of deal.II’s concrete
vector and matrix types adhere to. This makes the interface fully transparent with respect
to the concrete implementation, in particular to the storage strategy (full matrix, sparse
structure), and memory strategy (local, shared, distributed).

The paper concludes with a number of performance comparisons and examples that demon-
strate that the framework results in efficient, short and concise code. The performance compar-
isons show that the overhead introduced by std::function objects is negligible for moderately
sized matrices, even when compared to native expression-template implementations.

1 Introduction

Expression templates [4, 10] are a well known optimization technique to avoid the creation
of large, temporary objects in arithmetic expressions. This is especially important for
matrix-matrix, matrix-vector and vector-vector operations that frequently occur in com-
putational linear algebra. With matrix and vector objects that easily go into the gigabytes
of memory requirements, temporaries have to be avoided as much as possible. Nevertheless,
an intuitive syntax for working with linear algebra objects is desirable.

∗School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street SE, Minneapolis,
MN 55455, USA, (msmaier@umn.edu).

†SISSA - International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy,
(mauro.bardelloni@sissa.it, luca.heltai@sissa.it).

1



LinearOperator — an expression syntax for linear algebra

The idea behind expression templates is to overload operator+, -, *, etc., to build up an
arithmetic syntax tree with the help of the C++ template mechanism instead of performing
the arithmetic operation immediately by returning an intermediate object. The arithmetic
operations are performed later when the expression is complete and an evaluation of the
expression is actually requested. A number of numerical libraries make use of expression
templates to a certain extent. Examples are the C++ linear-algebra libraries Eigen [5], or
Blaze [6].

Although expression templates offer a good incarnation of the “generic programming”
paradigm [8], they are a difficult technique to master, that is not easily adapted to existing
numerical libraries, or collections of libraries, and it has non-negligible implementational
complexity.

We present an alternative approach of building up an expression syntax for matrix-
matrix, matrix-vector, and vector-vector operations. It uses the C++11 [1] features lambda
expressions and lambda captures, as well as std::function objects, instead of a templates-
only approach. This avoids the majority of the implementational complexity that usually
comes with a pure template solution. Only two class signatures are required: A class
LinearOperator to encapsulate a linear operation with two template parameters denoting
its domain and range, and a class PackagedOperation to store a (partially applied) expres-
sion with a template parameter for its range space in which the result can be stored. Our
expression syntax is suitable to encapsulate a wide variety of concrete matrix, vector, and
linear solver classes because only a generic, high-level interface is required (see Section 2).
In particular, we do not make any assumptions on the underlying memory model, or type of
execution (sequential, or with thread/process parallelization). No random access to data,
or other low-level access is required. This naturally rules out some low-level optimization
techniques that require such access (or detailed information about the expression that is
formed up), but on the other hand it allows encapsulation of a wide variety of concrete
matrix and vector implementations.

The expression syntax is developed within the framework of the finite-element library
deal.II and has been added to the library starting from version 8.3 [2]. However, we stress
the point that the implementation that is presented in this work is otherwise generic. The
only deal.II specific portion is the concrete form of the vector and matrix interfaces we
assume to be present, and that LinearOperator and PackagedOperation mimic. These
interfaces can be readily adjusted with minor changes to any concrete choice of naming
and call signature. We provide also two minimal examples of other interfaces and concrete
types, by adapting the LinearOperator class to work with the Eigen and Blaze libraries.
All examples and benchmark codes are available (under the GNU Lesser General Public
License version 2.1) on a public GitHub repository [7].

The overhead of dynamic std::function objects and dynamic temporary storage pools
used in LinearOperator compared to optimal hand-written code, or (smart) expression
templates, does not depend on the matrix size. The overhead is generally negligible for
matrix sizes beyond 1000× 1000.

The paper is structured as follows. In Section 2 we define the vector, matrix, and solver

2



LinearOperator — an expression syntax for linear algebra

interfaces. In Sections 3 and 4, we define the LinearOperator and PackagedOperation

classes. We discuss implementation aspects for vector space operations and present a
generic strategy for encapsulating concrete matrix objects into the LinearOperator frame-
work. Section 5 presents a number of performance comparisons between LinearOperator

and low-level implementations based on the deal.II, Eigen, and Blaze libraries. Section 6
presents a detailed real-life example, where LinearOperator and PackagedOperation are
used to implement a preconditioner for the Stokes problem. A short performance compari-
son to a hand-written preconditioner is presented. We draw some conclusions in Section 7.

2 Vector, matrix and solver interfaces

In this section we introduce the vector, matrix and solver interfaces we will use to describe
and implement the LinearOperator template class. We use the deal.II finite-element
library for our concrete implementation. It provides a large variety of matrix and vector
types (serial and MPI distributed variants, as well as wrappers to external libraries) and
offers a standardized, high-level interface for all vector and matrix types.

A matrix object describes a linear operation. As such we require at least the following
minimal interface for applying its action on a source vector src and storing the result in a
destination vector dst:

1 class Matrix

2 {

3 template<typename Vector>

4 void vmult(Vector &dst , const Vector &src);

5
6 template<typename Vector>

7 void vmult_add(Vector &dst , const Vector &src);

8 };

Here, the variant vmult add adds the result of the matrix vector multiplication to dst

instead of replacing its former contents with the result. Depending on the concrete matrix
type (such as full matrices, sparse matrices, MPI-distributed variants, or block matrices)
many more member functions for accessing and manipulating a matrix are available, and
the concrete signature of the vmult function, etc., may vary. It is only important to be able
to call vmult, etc., with a compatible vector type. The power of this approach lies in the
fact that using this interface is (almost) completely opaque with respect to the concrete
implementation, or operations being performed.

Similarly, the guaranteed minimal interface for vectors—beside the possibility to use
them in a call to vmult—is:

1 class Vector

2 {

3 typedef double number_type;

4
5 Vector &operator=(const Vector &);

3



LinearOperator — an expression syntax for linear algebra

6 Vector &operator=(number_type);

7
8 Vector &operator+=(const Vector &);

9 Vector &operator-=(const Vector &);

10 Vector &operator*=(number_type);

11 Vector &operator/=(number_type);

12 };

The roles of the operators =, +=, -=, *= and /= are straight-forward with the exception of
the special assignment operator = that takes a scalar number. This is syntactic sugar to
allow the mathematically common expression

1 v = 0.0; // v is of type Vector

to zero out a vector. One could have also implemented this with a zero() member function,
or similar. We will only assume that assigning a 0 to zero out is a well defined operation,
all other assignments of a scalar values are allowed to be undefined behaviour.

Another design decision that becomes apparent in the above interface is that no function
requires intermediate storage. With matrix and vector objects that easily go into the
gigabytes of memory requirements on modern platform, it is very important to prevent
the user of the library from any accidental space leak that, e. g., a temporary resulting
from an operator+ would require. deal.II ensures this by forbidding all such implicit
intermediates by simply not implementing those interfaces.

The iterative solver interfaces in deal.II for solving a linear equation Ax = b with a
given method and a preconditioner prec are fully templated and thus fairly generic:

1 template<typename Vector>

2 class Solver

3 {

4 template<typename Matrix , typename Preconditioner>

5 solve(const Matrix &A,

6 Vector &x,

7 const Vector &b,

8 const Preconditioner &prec);

9 };

It is assumed that Matrix, Preconditioner, and Vector adhere to the interfaces presented
above. (In case of a preconditioner, usually only vmult has to be implemented).

Remark. In the following we will assume that the above matrix and vector interfaces
are the smallest level of granularity we have access to. This naturally rules out some
optimizations and approaches that can be used for non-distributed linear algebra, but
allows us to readily apply the developed framework to all scenarios of different matrix
and vector implementations imaginable. Besides from the deal.II implementation, we
provide two more backends in Section 5, where we substitute the deal.II internal classes
with Eigen [5] and Blaze [6] implementations of dense and sparse matrices and vectors,
by writing simple wrappers and plugins that adhere to the above interfaces.

4



LinearOperator — an expression syntax for linear algebra

3 A linear operator class

The solver interface introduced in the previous section is generic in the sense that any
matrix or preconditioner object can be used provided that it implements (parts of) the
above matrix interface. As an example, consider two matrices B and C. If a preconditioner
B + k C (with some scalar k) should be used, then there is no necessity to construct an
actual matrix, say D, that physically stores B + k C. It completely suffices to provide an
object whose vmult function performs the operation (B + k C)v when applied to a given
vector v. However, there is a slight problem with the above interface in the sense that it
is unnecessarily verbose—compared to the fact that the mathematical expression B + k C
already encodes all necessary information. A possible implementation of the hypothetical
preconditioner is

1 template<typename Matrix>

2 class MyPreconditioner

3 {

4 MyPreconditioner(const Matrix &B, const Matrix &C, double k);

5
6 template<typename Vector>

7 void vmult(Vector &dst , const Vector &src) {

8 C.vmult(dst , src);

9 dst *= k;

10 B.vmult_add(dst , src);

11 }

12 };

One of the main motivations of the approach presented in the next subsection is the idea to
transform the mathematical expression B + k C into objects adhering to the above matrix
interface and freeing the user from writing unnecessary boiler-plate code.

3.1 LinearOperator

To obtain an expression syntax for the above matrix and vector interfaces, we need a class
concept that stores a computational expression. The concept of a linear operator is a good
starting point for this because the current matrix interface can be transferred immediately:
a linear operator has a notion of applying itself (vmult). Further, a linear operator has
a well defined domain (of definition) and range. This is in contrast to the above matrix
interface that usually only has templated vmult variants and consequently support multiple
range and domain vector types.

The question that arises naturally (at least from an implementational standpoint) is:
what strategy should we follow? It turns out that knowing the corresponding range and
domain of a linear operator—and how to construct vectors belonging to the respective
spaces—is not only very useful but sometimes required, e. g., the concatenation of two
matrix objects without corresponding range and domain is ill-defined. We thus define with
the help of C++11 std::function objects:

5



LinearOperator — an expression syntax for linear algebra

1 template <typename Range , typename Domain>

2 class LinearOperator

3 {

4 public:

5 std::function<void(Range &v, const Domain &u)> vmult;

6 std::function<void(Range &v, const Domain &u)> vmult_add;

7
8 std::function<void(Range &v)> reinit_range_vector;

9 std::function<void(Domain &v)> reinit_domain_vector;

10
11 ...

12 };

Here, vmult and its variants shall carry the usual meaning. reinit range vector and
reinit domain vector are function objects that shall reinitialize a vector v such that it
is suitable as a source or destination vector in an application of vmult.

Beside the usual default copy constructor and assignment operator we also implement
a default constructor that will populate all std::function objects with a default imple-
mentation throwing an error upon invocation. Further, templated variants of the copy
constructor and assignment operator are provided that use the linear operator wrapper
that will be discussed in Section 3.3:

1 template <typename Range , typename Domain> class LinearOperator

2 {

3 public:

4 ...

5
6 LinearOperator ();

7 LinearOperator(const LinearOperator<Range , Domain> &) = default;

8 template<typename Op> LinearOperator(const Op &op)

9 {

10 *this = linear_operator<Range , Domain , Op>(op);

11 }

12
13 LinearOperator<Range , Domain> &

14 operator=(const LinearOperator<Range , Domain> &) = default;

15
16 template <typename Op>

17 LinearOperator<Range , Domain> &operator=(const Op &op)

18 {

19 *this = linear_operator<Range , Domain , Op>(op);

20 return *this;

21 }

22 };

6



LinearOperator — an expression syntax for linear algebra

3.2 Vector space operations

With the help of the abstract vmult and vmult add functions it is now possible to imple-
ment vector space operations on linear operators. The key idea is to capture the individual
subexpressions (in form of their corresponding vmult and vmult add std::function ob-
jects) of the operands by a lambda-capture. As an example, consider the concatenation of
two compatible linear operators:

1 template <typename Range , typename Intermediate , typename Domain>

2 LinearOperator<Range , Domain>

3 operator*(const LinearOperator<Range , Intermediate> &first_op ,

4 const LinearOperator<Intermediate , Domain> &second_op)

5 {

6 LinearOperator<Range , Domain> return_op;

7
8 return_op.reinit_domain_vector = second_op.reinit_domain_vector;

9 return_op.reinit_range_vector = first_op.reinit_range_vector;

10
11 return_op.vmult = [first_op , second_op](Range &v, const Domain &u)

12 {

13 GrowingVectorMemory<Intermediate> vector_memory;

14
15 Intermediate *i = vector_memory.alloc ();

16 second_op.reinit_range_vector(*i);

17 second_op.vmult(*i, u);

18 first_op.vmult(v, *i);

19 vector_memory.free(i);

20 };

21
22 ...

23
24 return return_op;

25 }

For temporary storage of the intermediate result a memory pool provided by deal.II is
used that avoids unnecessary allocation and deallocation operations.

Remark. At this abstract level of concatenation of two opaque vmult function objects,
temporary storage of intermediate results cannot be avoided. One might argue that for a
plain matrix-matrix-vector product y = AB x of two matrices A and B and a vector x the
resulting operation could be fused into a single set of stacked loops,

yi =
∑
j,k

AijBjkxk,

that avoids intermediate storage. However, the goal of the discussion is to develop a
mechanism that provides syntactic sugar for completely abstract linear algebra operations—
and on this level of abstraction fusing of loops might not be possible (for certain data

7



LinearOperator — an expression syntax for linear algebra

structures), or not desirable, e. g., for distributed data structures fusing might involve
prohibitively expensive communication between computing nodes.

The conceptually simpler multiplication with a scalar number, as well as addition and
subtraction can be implemented in a straight-forward manner. As an example consider the
addition of two linear operators:

1 template <typename Range , typename Domain>

2 LinearOperator<Range , Domain>

3 operator+(const LinearOperator<Range , Domain> &first_op ,

4 const LinearOperator<Range , Domain> &second_op)

5 {

6 LinearOperator<Range , Domain> return_op;

7
8 return_op.reinit_range_vector = first_op.reinit_range_vector;

9 return_op.reinit_domain_vector = first_op.reinit_domain_vector;

10
11 return_op.vmult = [first_op , second_op](Range &v, const Domain &u)

12 {

13 first_op.vmult(v, u);

14 second_op.vmult_add(v, u);

15 };

16
17 return_op.vmult_add = [first_op , second_op](Range &v, const Domain &u)

18 {

19 first_op.vmult_add(v, u);

20 second_op.vmult_add(v, u);

21 };

22
23 ...

24
25 return return_op;

26 }

Remark. In a similar fashion it is possible to define in-place variants of all operations,
+=, -=, *= (for concatenation as well as scalar multiplication) that replace the left-hand
object.

3.3 Constructing a LinearOperator

A crucial, so far missing, ingredient is a strategy of how to construct a linear operator out
of a given data structure such as a matrix. For this, we define a function

1 template <typename Range , typename Domain , typename Matrix>

2 LinearOperator<Range , Domain> linear_operator(const Matrix &matrix)

3 {

4 LinearOperator<Range , Domain> return_op;

5
6 // populate return_op ...

7

8



LinearOperator — an expression syntax for linear algebra

8 return return_op;

9 }

that takes a reference to a matrix object and converts it to a LinearOperator. The matrix
object must remain a valid object throughout the whole lifetime of the LinearOperator

object. With the help of a lambda expression the corresponding vmult (vmult add, etc.)
function of the matrix object can be encapsulated in a straightforward manner:

1 op.vmult = [&matrix](Range &v, const Domain &u)

2 {

3 matrix.vmult(v,u);

4 }

The last missing ingredient for the linear operator wrapper is a mechanism for deriving
reinit range vector and reinit domain vector. Due to the fact that a wide variety
of data structures shall be supported, a general interface cannot be easily defined. An
alternative strategy is to use template specialization of a helper class to distinguish between
the vector types in question. The selection of the most specialized variants happens in
the second phase lookup. Thus, it is possible to have a fairly generic implementation in
the header file defining LinearOperator and providing specializations for certain types
in completely different header files (that only need to be imported in a compilation unit
actually using the types in question):

1 namespace internal

2 {

3 template<typename Vector>

4 struct ReinitHelper

5 {

6 template <typename Matrix>

7 static

8 void reinit_range_vector (const Matrix &matrix , Vector &v)

9 {

10 v.reinit(matrix.m());

11 }

12
13 ...

14 };

15 }

The helper class is then use in the definition of LinearOperator:

1 return_op.reinit_range_vector = [&matrix_exemplar](Range &v)

2 {

3 internal::ReinitHelper<Range>::reinit_range_vector(matrix , v);

4 };

This allows specialization for vector types that need a different setup. The split of the
Vector and Matrix template parameter to belong to the struct and to the member function,
respectively, allows to keep the Matrix template while specializing (or partially specializing)
the Vector parameter:

9



LinearOperator — an expression syntax for linear algebra

1 namespace internal

2 {

3 template <typename> struct ReinitHelper;

4
5 template<>

6 struct ReinitHelper<SpecialVector>

7 {

8 template <typename Matrix>

9 static

10 void reinit_range_vector (const Matrix &matrix ,

11 SpecialVector &v)

12 {

13 // special setup ...

14 }

15
16 ...

17 };

Remark. Encapsulation of matrix objects into a linear operator wrapper can also be
used to provide safeguard against common user errors: For most vmult variants the source
and destination vectors must be different storage locations. Encapsulating the call to vmult

allows to easily provide fall-back code for this condition:

1 op.vmult = [&matrix](Range &v, const Domain &u)

2 {

3 if (PointerComparison::equal (&v, &u))

4 {

5 // vmult with intermediate storage

6 }

7 else

8 {

9 matrix.vmult(v,u);

10 }

11 };

Here, PointerComparison::equal returns true if the addresses of u and v are the same,
otherwise it returns false.

Remark. As a byproduct of our design, the construction of a LinearOperator allows
one to implement in a straight forward manner and with minimal boiler plate code a
common interface, equipped with an embedded intuitive mathematical syntax, to arbitrary
external libraries, provided that the outcome of the operation is captured by the vmult of
the LinearOperator itself. As a powerful example, consider the following interface where a
standard CBLAS cblas dgemv routine is used to compute matrix-vector products between
existing deal.II objects instead of using built-in library operations:

1 FullMatrix<double> A(n,n);

10



LinearOperator — an expression syntax for linear algebra

2 LinearOperator<Vector<double>, Vector<double> > op;

3
4 op.vmult = [&A, n] (Vector<double> &dst , const Vector<double> &src)

5 {

6 cblas_dgemv (CblasRowMajor , CblasNoTrans ,

7 n, n, 1.0, &A(0,0), n,

8 &src(0), 1, 0.0, &dst(0), 1);

9 }

Such interfaces are very easy to write, in many occasions they remove the need to con-
struct full wrappers for external libraries, they are fully compatible with deal.II solver
routines, and they are agnostic of the underlying data structure, providing a very powerful
way to exploit (or explore) external libraries in a non-intrusive way.

3.4 Eliding null operations

Consider a matrix A ∈ Mat(n, n) and a vector x ∈ Rn. In the worst case scenario of a
full matrix, evaluating Ax requires ∼ n2 operations. However, if A is the null matrix, we
would like to avoid all operations and simply set the result to zero in vmult. Similarly, a
significant speed-up can be achieved for more complex operations, such as for example the
evaluation of (A + B)x, where A ∈ Mat(n, n), B ∈ Mat(n, n), and x ∈ Rn. In the most
general case of full matrices, this operation would require ∼ 2n2 operations. If either B or
A are a null matrix, at least half of the operations can be avoided.

In order to implement this strategy of eliding unnecessary operations we augment the
LinearOperator class with a member object of type bool, is null operator, that de-
scribes whether the object represents a null matrix. Whenever this variable is true, the
resulting object of an arithmetic operation can be simplified.

As an example, consider the + operator optimized using is null operator:

1 operator+(const LinearOperator<Range , Domain> &first_op ,

2 const LinearOperator<Range , Domain> &second_op)

3 {

4 if (first_op.is_null_operator)

5 return second_op;

6 if (second_op.is_null_operator)

7 return first_op;

8
9 // Do the general case here

10 ...

11 }

The complete implementation of the null operator simply provides a vmult method
that zero out the destination vector, while vmult add leaves the Range vector untouched:

1 LinearOperator<Range , Domain>

2 null_operator(const LinearOperator<Range , Domain> &op)

3 {

4 auto return_op = op;

11



LinearOperator — an expression syntax for linear algebra

5
6 return_op.is_null_operator = true;

7
8 return_op.vmult = [](Range &v, const Domain &u)

9 {

10 v = 0.;

11 };

12
13 return_op.vmult_add = [](Range &v, const Domain &u)

14 {};

15
16 return return_op;

17 }

3.5 LinearOperator for block structures

While it is readily possible to use the LinearOperator class to encapsulate block structures
(block matrices acting on block vectors), it is often desirable to retain access to the under-
lying block structure. For this reasons we implement a derived class BlockLinearOperator
that inherits the public interface from LinearOperator with the addition of three more
function objects that provide information about the block structure:

1 template <typename Range , typename Domain>

2 class BlockLinearOperator : public LinearOperator<Range , Domain>

3 {

4 public:

5 ...

6
7 typedef LinearOperator<typename Range::BlockType , typename

Domain::BlockType> BlockType;

8
9 std::function<unsigned int()> n_block_rows;

10 std::function<unsigned int()> n_block_cols;

11 std::function<BlockType(unsigned int , unsigned int)> block;

12 };

We provide helper functions which fill the above functions starting from standard deal.II

block matrices:

1 BlockSpaseMatrix<double> A(m, n);

2 ...

3 auto B = block_operator(A);

Now we can access each sub-block as an individual LinearOperator:

1 auto B00 = B.block(0,0);

2 auto B10 = B.block(1,0);

Using such a structure, it is possible to use the BlockLinearOperator as a whole, as
well as by accessing its composing blocks, by means of the member function block, like in

12



LinearOperator — an expression syntax for linear algebra

the snippet above.
This operator makes heavy use of std::function objects and lambda functions. Such a

flexibility comes with a run-time penalty, which makes such an object efficient only when the
encapsulated linear operators have a large individual size, (i.e., matrix blocks greater than
roughly 1000 × 1000). Sections 5 and 6 analyze in detail the run-time penalty associated
with such objects, and show its full potential in writing block based preconditioners for
complex partial differential equations.

4 A PackagedOperation

In this section we discuss a further generalization of the linear operator concept that applies
the same concept of expression construction to matrix-vector products, e. g., the evaluation
of a residual

1 Vector<double> residual = b - A * x;

with a LinearOperator A, and vectors b and x. The key point is that the above syntax
should not require any intermediate storage. We define the above binary operations in
such a way that they yield an object of type PackagedOperation:

1 template <typename Range>

2 class PackagedOperation

3 {

4 public:

5 ...

6
7 std::function<void(Range &v)> apply;

8 std::function<void(Range &v)> apply_add;

9
10 std::function<void(Range &v)> reinit_vector;

11 };

which—similarly to LinearOperator—stores the knowledge of how to apply (or apply add)
a computation to a vector and how to initialize a vector such that it is suitable to hold the
result. We define an implicit conversion operator that automatically converts the pack-
aged operation to its result such that the above assignment to a vector type residual is
possible:

1 template <typename Range>

2 class PackagedOperation

3 {

4 public:

5 ...

6
7 operator Range () const

8 {

9 Range result_vector;

10 reinit_vector(result_vector);

13



LinearOperator — an expression syntax for linear algebra

11 apply(result_vector);

12 return result_vector;

13 }

14 };

With the move assignment semantics introduced in C++11 [1] the creation of a result
vector and subsequent assignment does not imply any additional runtime cost. The mul-
tiplication of a linear operator with a vector is straight forward:

1 template <typename Range , typename Domain>

2 PackagedOperation<Range>

3 operator*(const LinearOperator<Range , Domain> &op,

4 const Domain &u)

5 {

6 PackagedOperation<Range> return_comp;

7
8 return_comp.reinit_vector = op.reinit_range_vector;

9
10 return_comp.apply = [op, &u](Range &v)

11 {

12 op.vmult(v, u);

13 };

14
15 ...

16
17 return return_comp;

18 }

Similarly, subtraction of a PackagedOperation from a vector:

1 template <typename Range>

2 PackagedOperation<Range> operator-(const Range &offset ,

3 const PackagedOperation<Range> &comp)

4 {

5 PackagedOperation<Range> return_comp;

6
7 return_comp.reinit_vector = comp.reinit_vector;

8
9 return_comp.apply = [&offset , comp](Range &v)

10 {

11 comp.apply(v);

12 v *= -1.;

13 v += offset;

14 };

15
16 ...

17
18 return return_comp;

19 }

Again, all lambda objects that are created store references to vectors. This implies that
(similarly to matrices that are wrapped into a LinearOperator object) all vectors must

14



LinearOperator — an expression syntax for linear algebra

remain valid objects throughout the lifetime of the PackagedOperation in which they are
used. As demonstrated in the following Section, in terms of performance, the one-liner

1 Vector<double> residual = b - linear_operator(A) * x;

is equivalent to

1 Vector<double> residual;

2 residual.reinit(A.n());

3 A.vmult(residual , x);

4 residual *= -1.;

5 residual += b;

5 Performance benchmarks

This section presents a number of detailed performance comparisons between the imple-
mentation with LinearOperator and a direct low-level implementation in deal.II [2], as
well as a comparison between LinearOperator variants that use Eigen [5] and Blaze [6]
as backend for concrete matrix and vector types, and their respective expression templates
version. The benchmark code used in this section is available on a public GitHub Reposi-
tory [7].

The dynamic std::function objects and dynamic temporary storage pools (for inter-
mediate results) used in our implementation entails a small runtime penalty compared
to hand-written and optimized low-level implementations. We compare the runtime per-
formances of LinearOperator and PackagedOperation variants with equivalent direct
low-level implementations in deal.II, Eigen and Blaze. The comparison is done for the
following four test cases:

Case 1: a matrix-vector multiplication: Mv;

Case 2: a power expression: M3v;

Case 3: a combination of matrix operations: (M + 3 Id)M v;

Case 4: a combination of matrix and vector operations: M(x + y + z).

The first two test cases are trivial and are meant to isolate the overhead introduced by
LinearOperator, as well as to point out how fusing nested loops exploiting the knowledge
of the low-level structure may not always be the best option, even if the implementation
allows it. Test cases three and four involve, respectively, a non-trivial expression con-
structed through the linear combination of LinearOperator objects and a combination of
LinearOperator and PackagedOperation objects, and are meant to expose some common
pitfalls related to the blind usage of high-level syntax.

All tests are performed on both dense n× n-matrices A,

Ai,j := 1 +
1

(i + 1)(j + 1)

15



LinearOperator — an expression syntax for linear algebra

and sparse n× n matrices S that are the system matrix of a Laplace problem (discretized
with linear finite elements on the unit square). Each operation is repeated 10, 000 times
for different matrix sizes, in order to reduce random fluctuations on the final result, and
the total computational time is reported both in graphical form (Figures 1 – 14, pages 19
– 27) and in tabular form (Tables 1 – 8, pages 33 – 34) using a laptop with a 2,8 GHz Intel
Core i7 processor, and 16 GB of RAM (1600 MHz DDR3), running in serial on a single
thread.

Independently of the particular low-level implementation, the LinearOperator and
PackagedOperation variants of the four test cases have the following structure:
Case 1 (LO):

1 const auto op = linear_operator(matrix);

2 for (unsigned int i = 0; i < iter; ++i) {

3 x = op * x;

4 x /= x.l2_norm ();

5 }

Case 2 (LO):

1 const auto op = linear_operator(matrix);

2 for (unsigned int i = 0; i < iter; ++i) {

3 x = op * op * op * x;

4 x /= x.l2_norm ();

5 }

Case 3 (LO):

1 const auto op = linear_operator(matrix);

2 const auto reinit = op.reinit_range_vector;

3 for (unsigned int i = 0; i < iter; ++i) {

4 x = (3.0 * identity_operator(reinit) + op) * op * x;

5 x /= x.l2_norm ();

6 }

Case 4 (LO):

1 const auto op = linear_operator(matrix);

2 for (unsigned int i = 0; i < iter; ++i) {

3 x = op * (x + y + z);

4 x /= x.l2_norm ();

5 }

Remark. The performance penalty of LinearOperator and PackagedOperation can be
isolated in two main parts:

– a call to an opaque std::function object: while in general this does not introduce
too much overhead per-se, it may prevent good compilers from inlining, for example,
vmult statements;

16



LinearOperator — an expression syntax for linear algebra

– runtime creation or destruction of temporary objects: even though LinearOperator

and PackagedOperation are small objects, their construction and destruction at run
time may still impact the overall performance of an algorithm if placed, for example,
inside inner tight loops.

One way to avoid the second type of overhead is to construct LinearOperator and
PackagedOperation outside of loops. This is the standard use case, for example when
constructing a preconditioner: Typically, all LinearOperator and PackagedOperation

objects are constructed prior to calling a solver, and internally the solver only sees overhead
of the first type, i.e., those related to calling an opaque std::function.

A way to isolate this standard behaviour in our benchmarks is to replace the creation
and destruction of LinearOperator and PackagedOperation inside the tight loops above
with a single application of a PackagedOperation object, that is constructed outside of
the loop:
Case 1 (LO fast):

1 const auto step = linear_operator(matrix) * x;

2 for (unsigned int i = 0; i < iter; ++i) {

3 step.apply(x);

4 x /= x.l2_norm ();

5 }

Case 2 (LO fast):

1 const auto op = linear_operator(matrix);

2 const auto step = op * op * op * x;

3 for (unsigned int i = 0; i < iter; ++i) {

4 step.apply(x);

5 x /= x.l2_norm ();

6 }

Case 3 (LO fast):

1 const auto op = linear_operator(matrix);

2 const auto reinit = op.reinit_range_vector;

3 const auto step = (3.0 * identity_operator(reinit) + op) * op * x;

4 for (unsigned int i = 0; i < iter; ++i) {

5 step.apply(x);

6 x /= x.l2_norm ();

7 }

Case 4 (LO fast):

1 const auto step = linear_operator(matrix) * (x + y + z);

2 for (unsigned int i = 0; i < iter; ++i) {

3 step.apply(x);

4 x /= x.l2_norm ();

5 }

17



LinearOperator — an expression syntax for linear algebra

In Figures 1 – 14, we report the first version of the benchmarks (involving creation and
destruction of temporary PackagedOperation objects in each loop) by “LO”, and denote
the second variant with “LO fast”.

5.1 Comparison with direct low-level implementation in deal.II

In this section, we use deal.II for the backend providing full and sparse matrix types
(FullMatrix and SparseMatrix) for the LinearOperator objects. The comparison is
done against the following low-level implementation code:
Case 1 (deal.II native):

1 Vector<double> tmp(n);

2 for (unsigned int i = 0; i < iter; ++i) {

3 matrix.vmult(tmp , x);

4 x = tmp;

5 x /= x.l2_norm ();

6 }

Notice that in the low-level implementation of Case 1, a temporary vector is necessary, since
deal.II does not guard internally that the destination and source vector are different. The
result of the comparison for Case 1 is presented in Figure 1 on page 19.
Case 2 (deal.II native):

1 Vector<double> tmp(n);

2 for (unsigned int i = 0; i < iter; ++i) {

3 matrix.vmult(tmp , x);

4 matrix.vmult(x, tmp);

5 matrix.vmult(tmp , x);

6 x = tmp;

7 x /= x.l2_norm ();

8 }

In this case we expect a slightly better result with the low-level implementation, since we
are exploiting knowledge about the operation to save one temporary vector allocation. The
internal memory management of the LinearOperator object has a slight overhead, visible
in Figure 2 (page 20) for very small matrix sizes. It is negligible for larger sized matrices.
Case 3 (deal.II native):

1 Vector<double> tmp(n);

2 for (unsigned int i = 0; i < iter; ++i) {

3 matrix.vmult(tmp , x);

4 matrix.vmult(x, tmp);

5 x.add(3., tmp);

6 x /= x.l2_norm ();

7 }

The same considerations we made for Case 2 are also valid for Case 3: A slight overhead
for the LinearOperator variant with respect to the direct implementation is visible in
Figure 3 on page 20.

18



LinearOperator — an expression syntax for linear algebra

Case 4a (deal.II native):

1 Vector<double> tmp(n);

2 for (unsigned int i = 0; i < reps; ++i) {

3 matrix.vmult(tmp , x);

4 matrix.vmult_add(tmp , y);

5 matrix.vmult_add(tmp , z);

6 x = tmp;

7 x /= x.l2_norm ();

8 }

We notice from Figure 4 on page 20 that the implementation in Case 4a does not compare
well with the LinearOperator and PackagedOperation variant, since the order of the
operations is suboptimal in this implementation. A better result is obtained in Case 4b
below where summation between vectors is performed prior to matrix-vector multiplication.
Case 4b (deal.II native):

1 Vector<double> tmp(n);

2 for (unsigned int i = 0; i < reps; ++i) {

3 tmp = x;

4 tmp += y;

5 tmp += z;

6 matrix.vmult(x, tmp);

7 x /= x.l2_norm ();

8 }

The results from the optimal version of the low-level implementation of Case 4b, collected
in Figure 5, confirm that the overhead of using LinearOperator and PackagedOperation

is only noticeable for very small matrix sizes of n < 300, and is thus negligible in practice.

101 102 103

10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

deal.II LO fast

deal.II LO

deal.II native

(a) FullMatrix

101 102 103 104 105
10−3

10−2

10−1

100

Matrix size

T
im

e
(s
)

deal.II LO fast

deal.II LO

deal.II native

(b) SparseMatrix

Figure 1: Case 1, Mv, LinearOperator VS deal.II native

19



LinearOperator — an expression syntax for linear algebra

101 102 103

10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

deal.II LO fast

deal.II LO

deal.II native

(a) FullMatrix

101 102 103 104 105

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

deal.II LO fast

deal.II LO

deal.II native

(b) SparseMatrix

Figure 2: Case 2, M3v, LinearOperator VS deal.II native

101 102 103

10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

deal.II LO fast

deal.II LO

deal.II native

(a) FullMatrix

101 102 103 104 105

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

deal.II LO fast

deal.II LO

deal.II native

(b) SparseMatrix

Figure 3: Case 3, (M + 3Id)Mv, LinearOperator VS deal.II native

101 102 103

10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

deal.II LO fast

deal.II LO

deal.II native

(a) FullMatrix

101 102 103 104 105
10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

deal.II LO fast

deal.II LO

deal.II native

(b) SparseMatrix

Figure 4: Case 4a, M(x + y + z), LinearOperator VS deal.II native

20



LinearOperator — an expression syntax for linear algebra

101 102 103

10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

deal.II LO fast

deal.II LO

deal.II native

(a) FullMatrix

101 102 103 104 105
10−3

10−2

10−1

100

Matrix size

T
im

e
(s
)

deal.II LO fast

deal.II LO

deal.II native

(b) SparseMatrix

Figure 5: Case 4b, M(x + y + z), LinearOperator VS deal.II native

5.2 Comparison with direct low-level implementation in Eigen

Eigen [5] is a C++ template library for linear algebra that offers a performant, high-level
interface based on expression templates. Expression templates allow to intelligently remove
temporaries and enable lazy evaluation, when it is appropriate.

In this regard, the expression-syntax mechanism introduced by LinearOperator and
PackagedOperation is superfluous when used with a backend that already supports such
a high-level syntax. Nevertheless, we provide such an interface for Eigen here in order to
estimate the overhead of LinearOperator and PackagedOperation compared to a native
expression-template mechanism. As a positive side effect, this demonstrates how versatile
our approach is: Interfacing with Eigen via LinearOperator is fully compatible with
deal.II—no additional wrapper is required. This allows, for example, to use the full suite
of linear solvers and preconditioners implemented in deal.II with data objects from Eigen.
In this section we use Eigen as a backend for dense and sparse matrices (Eigen::Matrix
and Eigen::SparseMatrix).

Only a minimal amount of glue-code is required, to make Eigen compatible to the
LinearOperator interface. This is accomplished by exploiting the plugin mechanism
of the Eigen library: Prior to including any header files a plugin header is specified with
the help of a macro:

1 #define EIGEN_MATRIX_PLUGIN "eigen_plugin.h"

2 #include <Eigen/Dense>

3 #include <Eigen/Sparse>

The header file eigen plugin.h can now be used to implement the missing Vector inter-
faces expected by LinearOperator and PackagedOperation; for example,

1 inline

2 Eigen::Matrix<_Scalar , _Rows , _Cols , _Options , _MaxRows , _MaxCols>&

3 operator=(const _Scalar &s) {

21



LinearOperator — an expression syntax for linear algebra

4 this->fill(s);

5 return (*this);

6 }

7 ...

After the minimal interface has been provided, a linear operator can be constructed by
simply populating its vmult operator through a lambda capture:

1 typedef Eigen::Matrix<double , Eigen::Dynamic , 1> EVector;

2 LinearOperator<EVector , EVector> lo;

3 lo.vmult = [&Ematrix] (EVector &d, const EVector &s) {

4 d = Ematrix*s;

5 };

This allows the LinearOperator variants to be written using the same syntax used pre-
viously. The low-level implementation using Eigen is straightforward, thanks to their
template expression syntax.
Case 1 (Eigen native):

1 for (unsigned int i = 0; i < iter; ++i) {

2 Ex = Ematrix * Ex;

3 Ex /= Ex.norm();

4 }

In the low-level implementation of Case 1, no temporary vector is necessary, since Eigen

automatically detects when a temporary object is needed and allocates the memory on its
own. The result of the comparison for Case 1 is presented in Figure 6 on page 23.
Case 2a (Eigen native):

1 for (unsigned int i = 0; i < iter; ++i) {

2 Ex = Ematrix * Ematrix * Ematrix * Ex;

3 Ex /= Ex.norm();

4 }

In Case 2a, the Eigen expression-template mechanism detects that two matrix-matrix
multiplications are requested, and fuses the two loops internally, effectively providing a
matrix vector multiplication between M3 and the given vector. Although formally correct,
such loop fusion is unnecessarily expensive, even for small matrix sizes, as Figure 7 shows.
The LinearOperator variant, offers a clear advantage in this case: Due to the fact that we
do not have direct access to the underlying matrix object, only the matrix-vector product
can be used. A fair comparison is achieved by forcing Eigen to isolate the matrix-vector
product. This is done in the following test case.
Case 2b (Eigen native):

1 for (unsigned int i = 0; i < iter; ++i) {

2 Ex = Ematrix * (Ematrix * (Ematrix * Ex));

3 Ex /= Ex.norm();

4 }

22



LinearOperator — an expression syntax for linear algebra

In this case we expect a better result with the low-level implementation, since it does
not have the overhead of LinearOperator at run time. The slight overhead is visible in
Figure 8 (page 24) for small matrix sizes, which is clearly negligible for larger matrices.
Case 3 (Eigen native):

1 for (unsigned int i = 0; i < iter; ++i) {

2 Ex = 3 * Ematrix * Ex + Ematrix * (Ematrix * Ex);

3 Ex /= Ex.norm();

4 }

Eigen does not support an abstract identity operator, which is in contrast provided by
the LinearOperator implementation. As such, Case 3, which involves the operation
(M + 3Id)Mv, cannot be constructed automatically by the template mechanism in Eigen,
and has to be expanded manually, resulting in an overall cost which is higher than the
LinearOperator counterpart, as Figure 9 on page 24 shows.

Case 4 (Eigen native):

1 for (unsigned int i = 0; i < iter; ++i) {

2 Ex = M * (Ex + Ey + Ez);

3 Ex /= Ex.norm();

4 }

The results of the last example are shown in Figure 10 on page 25.
In conclusion, the performance tests in this section confirm our statement that the over-

head introduced by LinearOperator and PackagedOperation objects is already negligible
for medium sized matrices with n > 1000, even when comparing with a native expression-
template implementation. Moreover, Cases 2 and 3 are an example where a clever usage of
an abstract identity operator and lazy evaluation of matrix-vector products with dynamic
intermediate storage have beneficial effects compared to a low-level expression template
that blindly avoid temporary by fusing matrix-matrix products.

101 102 103

10−3

10−2

10−1

100

Matrix size

T
im

e
(s
)

Eigen LO fast

Eigen LO

Eigen native

(a) FullMatrix

101 102 103 104 105
10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

Eigen LO fast

Eigen LO

Eigen native

(b) SparseMatrix

Figure 6: Case 1, Mv, LinearOperator VS Eigen

23



LinearOperator — an expression syntax for linear algebra

101 102 103

10−2

100

102

Matrix size

T
im

e
(s
)

Eigen LO fast

Eigen LO

Eigen native

(a) FullMatrix

101 102 103 104 105

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

Eigen LO fast

Eigen LO

Eigen native

(b) SparseMatrix

Figure 7: Case 2a, M3v, LinearOperator VS Eigen

101 102 103

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

Eigen LO fast

Eigen LO

Eigen native

(a) FullMatrix

101 102 103 104 105

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

Eigen LO fast

Eigen LO

Eigen native

(b) SparseMatrix

Figure 8: Case 2b, M(M(Mv)), LinearOperator VS Eigen

101 102 103
10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

Eigen LO fast

Eigen LO

Eigen native

(a) FullMatrix

101 102 103 104 105

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

Eigen LO fast

Eigen LO

Eigen native

(b) SparseMatrix

Figure 9: Case 3, (M + 3Id)Mv, LinearOperator VS Eigen

24



LinearOperator — an expression syntax for linear algebra

101 102 103
10−3

10−2

10−1

100

Matrix size

T
im

e
(s
)

Eigen LO fast

Eigen LO

Eigen native

(a) FullMatrix

101 102 103 104 105
10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

Eigen LO fast

Eigen LO

Eigen native

(b) SparseMatrix

Figure 10: Case 4, M(x + y + z), LinearOperator VS Eigen

5.3 Comparison with direct low-level implementation in Blaze

Blaze [6] is a C++ math library for dense and sparse arithmetic that uses newly intro-
duced smart expression templates. In contrast to plain expression templates, the smart
counterparts also make efforts in avoiding unnecessary matrix-matrix multiplications. This
addresses, for example, the overhead we encountered in Case 2a with Eigen in Section 5.2.

Similarly to the comparison with Eigen, we use the full and sparse matrices provided by
Blaze (blaze::DynamicMatrix and blaze::CompressedMatrix) as low-level backends for
the LinearOperator objects. Unfortunately, Blaze does not support a plugin mechanism
as provided by Eigen. Thus, we need a small wrapper around the blaze::DynamicVector

type in order to use LinearOperator and PackagedOperation objects with Blaze.
Case 1 (Blaze native):

1 for (unsigned int i = 0; i < iter; ++i) {

2 Bx = Bmatrix*Bx;

3 Bx /= std::sqrt(blaze::trans(Bx)*Bx);

4 }

Similarly to what happens in Eigen, the low-level implementation of Case 1 using Blaze

does not require explicit temporary vectors which are created by the smart expression
template mechanism. The result of the comparison for Case 1 is presented in Figure 11 on
page 26.
Case 2 (Blaze native):

1 for (unsigned int i = 0; i < iter; ++i) {

2 Bx = Bmatrix*Bmatrix*Bmatrix*Bx;

3 Bx /= std::sqrt(blaze::trans(Bx)*Bx);

4 }

In Case 2 the Blaze smart expression template mechanism is capable of detecting that
the two matrix-matrix multiplications are in fact not necessary, and reduces the operation

25



LinearOperator — an expression syntax for linear algebra

to three matrix-vector products, as in the LinearOperator variant. Figure 12 on page 27
shows the comparison between the two, with little overhead in the LinearOperator variant
for large matrix sizes.
Case 3 (Blaze native):

1 for (unsigned int i = 0; i < iter; ++i) {

2 Bx = 3*Bmatrix*Bx+Bmatrix*Bmatrix*Bx;

3 Bx /= std::sqrt(blaze::trans(Bx)*Bx);

4 }

Similarly to Eigen, no abstract identity operator is provided by Blaze. Consequently,
the overall cost for Case 3 is higher than the LinearOperator counterpart, as Figure 13
(page 13).
Case 4 (Blaze native):

1 for (unsigned int i = 0; i < iter; ++i)

2 {

3 Bx = Bmatrix*(Bx+By+Bz);

4 Bx /= std::sqrt(blaze::trans(Bx)*Bx);

5 }

The last example of this section, shown in Figure 14, confirms that the overhead introduced
by LinearOperator and PackagedOperation objects is negligible for large matrix sizes,
even when comparing with native smart expression template implementations.

101 102 103

10−3

10−2

10−1

100

Matrix size

T
im

e
(s
)

Blaze LO fast

Blaze LO

Blaze native

(a) FullMatrix

101 102 103 104 105
10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

Blaze LO fast

Blaze LO

Blaze native

(b) SparseMatrix

Figure 11: Case 1, Mv, LinearOperator VS Blaze

26



LinearOperator — an expression syntax for linear algebra

101 102 103
10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

Blaze LO fast

Blaze LO

Blaze native

(a) FullMatrix

101 102 103 104 105

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

Blaze LO fast

Blaze LO

Blaze native

(b) SparseMatrix

Figure 12: Case 2, M3v, LinearOperator VS Blaze

101 102 103

10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

Blaze LO fast

Blaze LO

Blaze native

(a) FullMatrix

101 102 103 104 105
10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

Blaze LO fast

Blaze LO

Blaze native

(b) SparseMatrix

Figure 13: Case 3, (M + 3Id)Mv, LinearOperator VS Blaze

101 102 103

10−3

10−2

10−1

100

Matrix size

T
im

e
(s
)

Blaze LO fast

Blaze LO

Blaze native

(a) FullMatrix

101 102 103 104 105
10−3

10−2

10−1

100

101

Matrix size

T
im

e
(s
)

Blaze LO fast

Blaze LO

Blaze native

(b) SparseMatrix

Figure 14: Case 4, M(x + y + z), LinearOperator VS Blaze

27



LinearOperator — an expression syntax for linear algebra

5.4 Global comparison and summary

For completeness, we report the timing results of all comparisons made in this section (with
their best option, where available) in tabular form in an Appendix (starting on page 33).
Tables 1 – 8 (pages 33 – 34) list the timings for all four cases and for all low-level backends
(deal.II, Eigen and Blaze).

Some interesting features emerge from the corresponding tables: both Eigen and Blaze

provide low-level implementations of dense matrix-vector products that are generally more
efficient than their deal.II counterparts. On the other hand, the implementation of
compressed-row sparse matrices in deal.II seems to surpass the Eigen and Blaze coun-
terparts.

The LinearOperator variants, involving a single creation of a PackagedOperation ob-
ject outside the loop, have negligible overhead, and in some cases behave better than
their corresponding low-level implementation (thanks, for example in case 3, to the smart
treatments of temporary identity operators).

The overhead introduced by the creation and destruction of a PackagedOperation in
each inner loop is constant in time (on a 2,8 GHz Intel Core i7 processor, 20,000 temporary
creations and destructions take around 0.28 seconds). This implies that for small matrix
sizes, such overhead is clearly noticeable, and its importance decreases when the matrix
size reaches a few hundred elements for the dense case, and a few thousand elements for
the sparse case.

In Tables 1 – 8 we report the LinearOperator version (LO) with intermediates (in the
loop) with the wording PO+backend and use LO+backend for the fast variants (LO fast).

6 A practical example—A preconditioner for the Stokes
Problem

A good way to show the power of an expression syntax for matrix-vector operations is a
real life example. Writing a suitable preconditioner for complex problems is far from being
trivial, and a non user-friendly approach often leads to mistakes and bugs which are quite
difficult to catch. In this section a Schur-complement preconditioner for the Stokes problem
is presented that serves as an example how the new LinearOperator concept tremendously
simplifies the readability of numerical code, while maintaining the same performance as
hand-crafted, low-level variants.

6.1 Statement of the problem

Consider the stationary Stokes problem

−∆u +∇p = f, ∇ · u = 0. (1)

28



LinearOperator — an expression syntax for linear algebra

The corresponding system matrix of this problem has the saddle-point structure

M =

(
A Bt

B 0

)
.

It is well known that a good preconditioner for this system is given by (see, e. g., [3])

P =

(
A Bt

0 −S

)−1

, (2)

where S = BA−1Bt is the corresponding Schur complement.
We are going to focus on the action of the inverse of (2) on a generic vector. In the

following we assume that A ∈ Mat(n, n) and B ∈ Mat(m,n) are results of a suitable
discretization (of stable test function spaces) such that the linear system is well-posed.

6.2 A low-level implementation

A straight forward implementation of the preconditioner P is to compute the action of P−1

on a given vector (u, p)t:(
v
q

)
=

(
A Bt

0 −S

)−1

·
(
u
p

)
=

(
A−1 A−1BtS−1

0 −S−1

)
·
(
u
p

)
. (3)

This leads to the following low-level pseudocode implementation of the preconditioner:

1 v = inv(A) * u;

2 u_tmp = inv(S) * p;

3 u_tmp = B^t * u_tmp;

4 u_tmp = inv(A) * u_tmp;

5 v += u_tmp;

6 q = -inv(S) * p;

This approach is unnecessarily expensive because it consists of two additional (and other-
wise identical) solve operations (with inv(A) and with inv(S)) and an intermediate vector.
This can be optimized by some minor code refactoring:

1 q = inv(S) * p;

2 v = u;

3 v += Bt * q;

4 v = inv(A) * v;

5 q *= -1;

We stress the point that, although the derivation of this pseudocode is straight forward, it is
nonetheless non-trivial. We demonstrate in the next subsection that the same pseudocode
can be derived on an abstract level with the help of the LinearOperator template class.

29



LinearOperator — an expression syntax for linear algebra

6.3 A high-level implementation with the LinearOperator template class

Let L = (lij)ij be a regular block lower-triangular matrix consisting of linear operators lij
and invertible diagonal blocks lii. For a given right hand side b = (bj)j , let the task be to
find a block vector x = (xi)i such that:

Lx = b. (4)

This equation can be solved by block-wise forward substitution:
x0 = l−1

0,0 · b0,

xi = l−1
i,i ·

(
bn −

i−1∑
j=0

li,j · xj
)
.

(5)

Similarly, a system of equations with an upper block triangular matrix U can be solved by
block-wise backward substitution:

xn = u−1
n,n · bn,

xi = u−1
i,i ·

(
bn −

n∑
j=i+1

ui,j · xj
)
.

(6)

Both algorithms can be implemented in a straightforward manner. We created two func-
tions with the following signature:

1 template <size_t n, typename Range , typename Domain>

2 BlockLinearOperator<n, n, Domain , Range>

3 block_back_substitution(

4 const BlockLinearOperator<n, n, Range , Domain> &block_operator ,

5 const BlockLinearOperator<n, n, Domain , Range> &diagonal_inverse);

This allows us to write the inverse of the preconditioner in a “natural”, high-level way
without loss of (algorithmic) performance. Notice that in (6) we only use the inverses of
diagonal blocks, and, more importantly, they are used only once. The following listing
illustrates the implementation of the vmult operation of the block back-substitution oper-
ator, which assumes that all input objects are of type BlockLinearOperator. The other
functions have a very similar implementation.

1 return_op.vmult = [block_operator , diagonal_inverse]

2 (Range &v, const Range &u)

3 {

4 const unsigned int m = block_operator.n_block_rows ();

5 if (m == 0)

6 return;

7
8 v.block(m-1) = diagonal_inverse.block(m-1, m-1) * u.block(m-1);

9
10 for (int i = m - 2; i >= 0; --i)

30



LinearOperator — an expression syntax for linear algebra

11 {

12 auto &dst = v.block(i);

13 dst = u.block(i);

14 dst *= -1.;

15 for (int j = i + 1; j < m; ++j)

16 dst += block_operator.block(i, j) * v.block(j);

17 dst *= -1.;

18 dst = diagonal_inverse.block(i, i) * dst;

19 }

20 };

With these prerequisites at hand, the solution process for a Stokes system, including
the construction of a block triangular preconditioner can be implemented in very few lines
of code, showing the full power of the expression syntax. Assuming that preconditioners
precA and precS, as well as solvers Asolver and Ssolver for A and S, respectively, are
available and with a solver Gsolver for the global system:

1 auto Bt = transpose(B);

2 auto Ainv = inverse_operator(A , Asolver , Aprec);

3 auto S = B * Ainv * Bt;

4 auto Sinv = inverse_operator(S, Ssolver , Sprec);

5
6 auto system_matrix = block_operator ({{A, Bt}, {B, 0}});

7 auto diagonal_inverse = block_diagonal_operator ({Ainv , -1. * Sinv});

8 P_inv = block_back_substitution(system_matrix , diagonal_inverse);

9
10 auto system_inverse = inverse_operator(system_matrix , Gsolver , P_inv);

11
12 solution = system_inverse * rhs;

6.4 Benchmarks

In this subsection we present a small test to assess the performance of the LinearOperator
implementation of the system preconditioners when compared to a standard implementa-
tion on a parallel cluster, using the MPI parallelization strategy. The computations were
performed on a cluster with 11 nodes. Each node is equipped with two CPUs, with 10 cores
(E5) Intel Xeon E5-2680 v2 each. The standard implementation is taken from the example
program “step-32” of the deal.II library [9]. It implements the optimized algorithm pre-
sented in Subsection 6.2. The LinearOperator implementation uses the back-substitution
algorithm presented in equation (6). The benchmark consists of performing 100 matrix
vector multiplications with the two preconditioners.

31



LinearOperator — an expression syntax for linear algebra

101.5 102

100.5

101

] Cores

T
im

e
(s
)

LinearOperator+Step-32

Step-32

Figure 15: Computational cost of a Stokes preconditioner multiplication, deal.II native
implementation VS LinearOperator implementation in step-32 [9], while vary-
ing the number of cores.

7 Conclusion

We introduced an expression syntax for the evaluation of vector space operations. It uses
the new C++11 features of std::function objects and lambda expressions to avoid the
usual template complexity associated with an implementation via pure expression tem-
plates. The introduced framework is generic, it requires only a minimal interface that
vector and matrix classes must adhere to. We gave a number of performance comparisons
and examples that demonstrate that the framework results in efficient, short and concise
code. The numerical examples demonstrate that the runtime overhead introduced by the
std::function objects and lambda functions is negligible, even when compared to native
expression templates implementations like Eigen or Blaze.

Acknowledgements

This work was partially supported by the project OpenViewSHIP, “Sviluppo di un eco-
sistema computazionale per la progettazione idrodinamica del sistema elica-carena”, sup-
ported by Regione FVG - PAR FSC 2007-2013, Fondo per lo Sviluppo e la Coesione and
by the project “TRIM - Tecnologia e Ricerca Industriale per la Mobilità Marina”, CTN01-
00176-163601, supported by MIUR, the Italian Ministry of Instruction, University and
Research.

The authors wish to thank the anonymous referees for their precious and constructive
comments.

32



LinearOperator — an expression syntax for linear algebra

Appendix

Timing results in tabular form for all comparisons made in Section 5.

Size deal.ii LO+deal.ii PO+deal.ii Eigen LO+Eigen PO+Eigen Blaze LO+Blaze PO+Blaze
2 3.54 · 10−4 6.7 · 10−4 7.26 · 10−3 8.38 · 10−4 8.79 · 10−4 5.88 · 10−3 6.47 · 10−4 6.58 · 10−4 4.72 · 10−3

4 4.21 · 10−4 7.2 · 10−4 6.95 · 10−3 1.06 · 10−3 1.05 · 10−3 6.41 · 10−3 6.84 · 10−4 7.2 · 10−4 4.73 · 10−3

8 6.55 · 10−4 9.81 · 10−4 6.84 · 10−3 1.28 · 10−3 1.31 · 10−3 6.02 · 10−3 8.55 · 10−4 8.86 · 10−4 4.87 · 10−3

16 1.65 · 10−3 1.74 · 10−3 8.23 · 10−3 1.95 · 10−3 2.01 · 10−3 7.12 · 10−3 1.28 · 10−3 1.32 · 10−3 6 · 10−3

32 5.5 · 10−3 5.57 · 10−3 1.22 · 10−2 4.53 · 10−3 4.59 · 10−3 9.82 · 10−3 3.28 · 10−3 3.46 · 10−3 7.84 · 10−3

64 2.3 · 10−2 2.31 · 10−2 2.97 · 10−2 1.12 · 10−2 1.08 · 10−2 1.65 · 10−2 9.69 · 10−3 9.85 · 10−3 1.43 · 10−2

128 0.11 0.1 0.11 3.38 · 10−2 3.29 · 10−2 3.85 · 10−2 3.44 · 10−2 3.26 · 10−2 4.49 · 10−2

256 0.49 0.47 0.48 0.15 0.14 0.15 0.14 0.14 0.14
512 1.96 1.96 2 0.5 0.5 0.54 0.57 0.58 0.56

1,024 8.25 8.81 8.24 2.64 2.64 2.63 3.09 2.75 3.18

Table 1: Case 1, Mv, Comparison of full-matrix benchmarks.

Size deal.ii LO+deal.ii PO+deal.ii Eigen LO+Eigen PO+Eigen Blaze LO+Blaze PO+Blaze
9 1.54 · 10−3 1.71 · 10−3 7.94 · 10−3 1.28 · 10−3 1.24 · 10−3 6.12 · 10−3 1.12 · 10−3 1.14 · 10−3 5.29 · 10−3

25 2.93 · 10−3 2.86 · 10−3 9.35 · 10−3 2.49 · 10−3 2.46 · 10−3 7.54 · 10−3 2.18 · 10−3 2.29 · 10−3 6.54 · 10−3

81 7.97 · 10−3 7.98 · 10−3 1.44 · 10−2 9.59 · 10−3 7.85 · 10−3 1.32 · 10−2 6.57 · 10−3 7.1 · 10−3 1.09 · 10−2

289 4.43 · 10−2 4.48 · 10−2 5.26 · 10−2 2.56 · 10−2 2.57 · 10−2 3.19 · 10−2 2.3 · 10−2 2.48 · 10−2 3.02 · 10−2

1,089 9.4 · 10−2 9.33 · 10−2 9.06 · 10−2 9.37 · 10−2 9.36 · 10−2 9.94 · 10−2 8.97 · 10−2 8.49 · 10−2 0.1
4,225 0.26 0.27 0.25 0.4 0.4 0.39 0.42 0.39 0.42
16,641 0.67 0.7 0.65 1.65 1.64 1.66 1.64 1.55 1.61
66,049 2.22 2.38 2.2 6.64 6.58 6.86 6.67 7.07 6.85

Table 2: Case 1, Mv, Comparison of sparse-matrix benchmarks.

Size deal.ii LO+deal.ii PO+deal.ii Eigen LO+Eigen PO+Eigen Blaze LO+Blaze PO+Blaze
2 4.81 · 10−4 1.18 · 10−3 0.28 4.11 · 10−3 3.45 · 10−3 0.29 2.47 · 10−3 1.64 · 10−3 0.27
4 6.97 · 10−4 1.57 · 10−3 0.28 3.96 · 10−3 4.11 · 10−3 0.28 2.72 · 10−3 1.47 · 10−3 0.27
8 1.38 · 10−3 2.25 · 10−3 0.27 4.6 · 10−3 4.67 · 10−3 0.28 3.51 · 10−3 1.91 · 10−3 0.28
16 4.21 · 10−3 4.57 · 10−3 0.28 5.81 · 10−3 6.24 · 10−3 0.29 4.62 · 10−3 3.48 · 10−3 0.28
32 1.59 · 10−2 1.64 · 10−2 0.29 1.49 · 10−2 1.37 · 10−2 0.28 9.74 · 10−3 7.49 · 10−3 0.28
64 6.89 · 10−2 6.96 · 10−2 0.35 2.97 · 10−2 3.24 · 10−2 0.3 2.87 · 10−2 2.59 · 10−2 0.3
128 0.33 0.31 0.6 0.11 0.11 0.39 9.53 · 10−2 0.11 0.37
256 1.4 1.4 1.69 0.39 0.45 0.68 0.41 0.44 0.71
512 5.95 5.84 6.2 1.44 1.59 1.83 1.65 1.64 1.94

1,024 24.4 24.2 24.6 8.13 8.06 8.28 8.28 8.37 9

Table 3: Case 2, M3v, Comparison of full-matrix benchmarks.

Size deal.ii LO+deal.ii PO+deal.ii Eigen LO+Eigen PO+Eigen Blaze LO+Blaze PO+Blaze
9 3.43 · 10−3 4.26 · 10−3 0.29 4.1 · 10−3 4.13 · 10−3 0.28 4.38 · 10−3 2.72 · 10−3 0.28
25 6.77 · 10−3 7.84 · 10−3 0.28 7.45 · 10−3 7.25 · 10−3 0.28 7.13 · 10−3 5.76 · 10−3 0.28
81 2.17 · 10−2 2.21 · 10−2 0.3 1.96 · 10−2 2.13 · 10−2 0.3 1.96 · 10−2 1.72 · 10−2 0.3
289 0.12 0.13 0.6 7.02 · 10−2 6.55 · 10−2 0.35 6.59 · 10−2 6.72 · 10−2 0.35

1,089 0.21 0.2 0.82 0.25 0.25 0.52 0.31 0.25 0.59
4,225 0.54 0.55 1.19 1.02 1.01 1.28 1.02 1.14 1.33
16,641 1.57 1.62 2.23 4.07 4.24 4.52 4.48 4.09 4.84
66,049 5.78 6.17 6.74 17.8 18.3 18.2 20 19.1 21.1

Table 4: Case 2, M3v, Comparison of sparse-matrix benchmarks.

33



LinearOperator — an expression syntax for linear algebra

Size deal.ii LO+deal.ii PO+deal.ii Eigen LO+Eigen PO+Eigen Blaze LO+Blaze PO+Blaze
2 4.14 · 10−4 3.42 · 10−3 0.62 2.23 · 10−3 3.42 · 10−3 0.63 2 · 10−3 9.01 · 10−4 0.63
4 5.42 · 10−4 3.68 · 10−3 0.64 2.9 · 10−3 3.92 · 10−3 0.63 2.13 · 10−3 9.29 · 10−4 0.63
8 1.03 · 10−3 4.55 · 10−3 0.65 4.16 · 10−3 4.22 · 10−3 0.63 2.65 · 10−3 1.25 · 10−3 0.74
16 2.72 · 10−3 5.53 · 10−3 0.63 6.45 · 10−3 5.52 · 10−3 0.64 3.88 · 10−3 2.52 · 10−3 0.64
32 1.06 · 10−2 1.32 · 10−2 0.66 1.05 · 10−2 1.04 · 10−2 0.64 8.67 · 10−3 5.34 · 10−3 0.65
64 4.56 · 10−2 4.7 · 10−2 0.68 2.93 · 10−2 2.22 · 10−2 0.66 2.74 · 10−2 1.81 · 10−2 0.68
128 0.22 0.22 0.85 0.1 7.06 · 10−2 0.72 0.1 7.66 · 10−2 0.71
256 0.94 0.95 1.59 0.45 0.31 0.94 0.43 0.27 0.96
512 3.93 4.08 4.61 1.45 1 1.66 1.98 1.18 1.79

1,024 16.2 16 17.3 7.86 5.3 6.12 8.24 5.6 6.43

Table 5: Case 3, (M + 3Id)Mv, Comparison of full-matrix benchmarks.

Size deal.ii LO+deal.ii PO+deal.ii Eigen LO+Eigen PO+Eigen Blaze LO+Blaze PO+Blaze
9 2.56 · 10−3 5.39 · 10−3 0.65 3.41 · 10−3 4.39 · 10−3 0.63 3.37 · 10−3 1.72 · 10−3 0.63
25 4.73 · 10−3 7.39 · 10−3 0.64 6.06 · 10−3 6.03 · 10−3 0.64 6.27 · 10−3 3.93 · 10−3 0.63
81 1.45 · 10−2 1.69 · 10−2 0.65 1.83 · 10−2 1.53 · 10−2 0.66 1.8 · 10−2 1.22 · 10−2 0.65
289 8.61 · 10−2 8.48 · 10−2 1.13 6.69 · 10−2 5.15 · 10−2 0.68 7.36 · 10−2 5.44 · 10−2 0.69

1,089 0.16 0.16 1.37 0.26 0.19 0.83 0.27 0.18 0.82
4,225 0.4 0.42 1.59 1.07 0.72 1.37 1.05 0.7 1.43
16,641 1.1 1.18 2.49 4.21 2.98 3.69 4.57 3.09 3.93
66,049 3.96 4.16 5.74 18.3 13.1 14.1 20.6 13.2 14.9

Table 6: Case 3, (M + 3Id)Mv, Comparison of sparse-matrix benchmarks.

Size deal.ii LO+deal.ii PO+deal.ii Eigen LO+Eigen PO+Eigen Blaze LO+Blaze PO+Blaze
2 3.8 · 10−4 8.12 · 10−4 2.81 · 10−2 2.01 · 10−3 1.6 · 10−3 6.98 · 10−2 1.52 · 10−3 7.49 · 10−4 6.61 · 10−2

4 4.69 · 10−4 8.68 · 10−4 2.78 · 10−2 3.64 · 10−3 1.64 · 10−3 7.21 · 10−2 1.92 · 10−3 1.87 · 10−3 6.76 · 10−2

8 8.56 · 10−4 1.14 · 10−3 3.03 · 10−2 2.73 · 10−3 1.98 · 10−3 7.05 · 10−2 2.05 · 10−3 9.84 · 10−4 6.79 · 10−2

16 2.36 · 10−3 1.95 · 10−3 3.17 · 10−2 2.99 · 10−3 2.7 · 10−3 7.09 · 10−2 2.62 · 10−3 1.45 · 10−3 6.83 · 10−2

32 5.68 · 10−3 5.9 · 10−3 3.36 · 10−2 5.68 · 10−3 5.12 · 10−3 7.37 · 10−2 4.68 · 10−3 3.14 · 10−3 7.25 · 10−2

64 2.33 · 10−2 2.42 · 10−2 5.24 · 10−2 1.3 · 10−2 1.3 · 10−2 8.65 · 10−2 1.12 · 10−2 9.75 · 10−3 8.57 · 10−2

128 0.11 0.11 0.14 3.81 · 10−2 4.56 · 10−2 0.11 3.51 · 10−2 3.48 · 10−2 0.11
256 0.48 0.48 0.5 0.15 0.15 0.22 0.15 0.14 0.22
512 2.26 1.95 2.02 0.52 0.54 0.58 0.53 0.53 0.6

1,024 8 8.09 8.09 2.62 2.56 2.71 2.79 2.71 2.89

Table 7: Case 4, M(x + y + z), Comparison of full-matrix benchmarks.

Size deal.ii LO+deal.ii PO+deal.ii Eigen LO+Eigen PO+Eigen Blaze LO+Blaze PO+Blaze
9 1.56 · 10−3 1.87 · 10−3 2.95 · 10−2 2.24 · 10−3 1.92 · 10−3 6.84 · 10−2 2.35 · 10−3 1.22 · 10−3 6.78 · 10−2

25 2.58 · 10−3 3.03 · 10−3 2.98 · 10−2 3.55 · 10−3 3.16 · 10−3 7.49 · 10−2 3.48 · 10−3 2.47 · 10−3 7.43 · 10−2

81 7.72 · 10−3 8.23 · 10−3 3.71 · 10−2 9.22 · 10−3 8.58 · 10−3 7.82 · 10−2 8.06 · 10−3 6.64 · 10−3 7.6 · 10−2

289 4.62 · 10−2 4.79 · 10−2 9.16 · 10−2 2.77 · 10−2 2.8 · 10−2 9.71 · 10−2 2.47 · 10−2 2.49 · 10−2 9.71 · 10−2

1,089 0.12 0.12 0.2 0.11 0.11 0.18 9.47 · 10−2 0.11 0.19
4,225 0.32 0.32 0.39 0.44 0.43 0.5 0.41 0.4 0.51
16,641 0.84 0.84 0.92 1.83 1.8 1.89 1.72 1.74 1.97
66,049 2.67 2.7 2.82 7.5 7.72 7.77 7.23 7.39 8.02

Table 8: Case 4, M(x + y + z), Comparison of sparse-matrix benchmarks.

34



LinearOperator — an expression syntax for linear algebra

References

[1] Standard for Programming Language C++, 2011. ISO/IEC 14882:2011.

[2] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, and
B. Turcksin. The deal.ii library, version 8.3. Archive of Numerical Software, 4(100):1–
11, 2016.

[3] M. Benzi and A. J. Wathen. Some Preconditioning Techniques for Saddle Point Prob-
lems, volume 13 of Mathematics in Industry, pages 195–211. Springer Berlin Heidel-
berg, 2008.

[4] K. Budge. C++ optimization and excluding middle-level code. In Proceedings of the
Second Annual Object-Oriented Numerics Conference, pages 107–121, 1994.

[5] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[6] K. Iglberger, G. Hager, J. Treibig, and U. Rüde. Expression templates revisited: a per-
formance analysis of current methodologies. SIAM Journal on Scientific Computing,
34(2):C42–C69, 2012.

[7] M. Maier, M. Bardelloni, and L. Heltai. LinearOperator Benchmarks, Version 1.0.0,
Mar. 2016. http://dx.doi.org/10.5281/zenodo.47202.

[8] D. R. Musser and A. A. Stepanov. Generic programming. volume 358 of Lecture Notes
in Computer Science, pages 13–25. Springer Berlin Heidelberg, 1989.

[9] The deal.II Authors. step-32. https://www.dealii.org/developer/doxygen/deal.
II/step_32.html.

[10] T. Veldhuizen. Expression templates. C++ Report, 7(5):280–305, 1995.

35

http://eigen.tuxfamily.org
http://dx.doi.org/10.5281/zenodo.47202
https://www.dealii.org/developer/doxygen/deal.II/step_32.html
https://www.dealii.org/developer/doxygen/deal.II/step_32.html

	Introduction
	Vector, matrix and solver interfaces
	A linear operator class
	LinearOperator
	Vector space operations
	Constructing a LinearOperator
	Eliding null operations
	LinearOperator for block structures

	A PackagedOperation
	Performance benchmarks
	Comparison with direct low-level implementation in deal.II
	Comparison with direct low-level implementation in Eigen
	Comparison with direct low-level implementation in Blaze
	Global comparison and summary

	A practical example—A preconditioner for the Stokes Problem
	Statement of the problem
	A low-level implementation
	A high-level implementation with the LinearOperator template class
	Benchmarks

	Conclusion
	References

