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Abstract — This paper introduces an framework for adaptivity for a class of heterogeneous multiscale
finite element methods for elliptic problems, which is suitable for a posteriori error estimation with
separated quantification of the model error as well as the macroscopic and microscopic discretiz-
ation errors. The method is derived within a general framework for “goal-oriented” adaptivity, the
so-called Dual Weighted Residual (DWR) method. This allows for a systematic a posteriori balan-
cing of multiscale modeling and discretization. The developed method is tested numerically at elliptic
diffusion problems for different types of heterogeneous oscillatory coefficients.
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1. Introduction

A large class of modeling problems in physics and engineering is of multiscale
character, meaning that relevant physical processes may act on largely different
scales. This usually results in unacceptably high computational cost for a full resol-
ution of all scales. One way to avoid this dilemma are multiscale techniques, where,
generally speaking, an effective model is solved on a coarse scale with upscaled ef-
fective parameters that are determined with the help of localized (possibly coupled)
sampling problems on a fine scale.

The usage of upscaling principles in numerical methods can be traced back as
early as the 70ies. We exemplarily mention a paper by Hill [33], in which upscal-
ing principles for effective parameters were formulated in the context of elasticity
problems. Since then, multiscale methods have become increasingly popular in the
engineering community where they are usually referred to as computational homo-
genization schemes (see Geers et al. [30] for an overview).

Different approaches for modeling multiscale phenomena in the context of finite
element methods exist and have lead to a number of methods introduced over the last
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years. Most of them either rely on the existence of a periodic or stochastic substruc-
ture or on the scale-dependent splitting of variational solution and test spaces. Most
notable are the variational multiscale method developed by Hughes et al. [35] and
Brezzi [19], the mixed multiscale methods by Arbogast & Boyd [7] or Chen & Hou
[22], the two-scale or generalized finite element method by Matache & Schwab
[37,38], or the multiscale finite element method introduced by Hou & Wu [34], Efen-
diev et al. [29], and variants of these approaches. A mathematically rigorous for-
mulation in the context of finite element theory and homogenization theory was
given by E & Engquist [26,27] with the description of the so-called Heterogeneous
Multiscale Method (HMM). In its original setting the HMM relies on a periodic
substructure of the coefficient matrix and can be viewed as a direct discretization of
the underlying homogenization process (cf. Babuska [8] and Ohlberger [43]).

Multiscale schemes introduce significant complexity with respect to sources of
error, not only are there discretization errors on a coarse and fine scales, but also a
model error introduced by modeling assumptions. This makes a priori knowledge
and/or suitable a posteriori strategies highly necessary. For the HMM quite a num-
ber of theoretical results are available: An a priori error estimation for the HMM
dealing with the discretization errors was first presented by E & Engquist [26,27], E
et al. [28], and later, with improved results, by Abdulle [1] and Abdulle & Vilmart
[4] (for a nonlinear case) – without an estimation of the underlying modeling er-
ror. A posteriori error estimation for the discretization errors was later presented
by Ohlberger [43], Henning & Ohlberger [31], Henning et al. [32], and Abdulle
[2]; corresponding goal-oriented error estimation results (for discretization errors)
were formulated by Abdulle & Nonnenmacher [3]. First results for estimating and
controlling the model error in the context of multiscale schemes were derived by
Oden & Vemaganti [39,41] and Braack & Ern [16]. The paper by Romkes & Moody
[45] deals with the localization of the dual problems involved.

This paper presents a framework for combined model and discretization adaptiv-
ity based on the Dual Weighted Residual (DWR) method by Becker & Rannacher
[12,13,14] (see also Bangerth & Rannacher [10]) for a class of well-known, rather
simple, multiscale schemes. At its heart, independent error indicators for macroscale
and microscale discretization as well as the model error are derived and an algorithm
is formulated for simultaneous control and balancing of all error sources. Here, the
major novelty lies in the simultaneous treatment of discretization and model errors
within a unified framework for adaptivity and, in particular, in the introduction of
model adaptation in the context of the sampling procedures by tuning the underly-
ing “sampling meshes”. This adaptive framework is fairly general in the sense that,
in principle, it can be applied to a variety of different multiscale schemes (as long
as a complete microscale description is available).

For the sake of simplicity, we restrict the discussion to the usual elliptic model
problem with heterogeneous oscillatory coefficient. Because the main subject of
the paper is the introduction of an a posteriori framework for combined model and
discretization adaptivity, we further restrict the discussion to the class of effective
models produced by local averaging strategies using geometric or harmonic mean
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values. This is justified by the fact that, for the purpose of this paper, a computation-
ally inexpensive reconstruction strategy is desired—the efficiency of the framework
will be based on a posteriori error control of the underlying model and discretiza-
tion parameters. The special case of classical homogenization strategies, such as the
HMM, is discussed in remarks. The application of the proposed a posteriori frame-
work to more sophisticated averaging strategies will be the subject of a forthcoming
publication.

The outline of this paper is as follows. In Section 2, we introduce on an ab-
stract level our multiscale formulation, which is especially designed to allow for
local model adaptation, and prove well-posedness. Then, in Section 3, we give an
a posteriori error analysis of this scheme, in which the effects of modeling errors
are separated from macroscopic and microscopic discretization errors. These error
estimates are used for developing a strategy for simultaneously adapting modeling
and discretization. Finally, in Section 4 the effectivity of the developed algorithm is
demonstrated at prototypical test problems.

2. An abstract multiscale scheme for model adaptation

In this section, we present a multiscale scheme for model adaptation that expli-
citly decouples all discretization and modeling parameters. It is a reformulation of
the classical HMM method by E & Engquist [26,27] and has some similarities with
the model adaptation framework introduced by Oden & Vemaganti [39,40,41] and
Braack & Ern [16]. The novelty lies in the explicit decoupling of the sampling pro-
cesses from the macroscopic discretization, as well as the simultaneous treatment
of discretization and modeling parameters.

Let us consider the following multi-scale model problem: Find uε ∈H1
0 (Ω) s. t.

(Aε
∇uε ,∇ϕ) = ( f ,ϕ) ∀ϕ ∈ H1

0 (Ω) , (2.1)

on a bounded domain Ω⊂Rd (d = 2,3) where the generally tensor-valued function
Aε ∈ L∞ (Ω)d×d is of heterogeneous character and highly oscillating on a small
length scale indicated by a scaling parameter ε . Here, H1

0 (Ω) is the usual first-
order Sobolev Hilbert space with zero Dirichlet data along the boundary ∂Ω. (·, ·)
denotes the L2 scalar product on Ω and ‖ · ‖ = (·, ·)1/2 the corresponding norm.
The norms of other function spaces are indicated by subscripts, e. g., ‖ · ‖L∞(Ω) or
‖ · ‖K = ‖ · ‖L2(K) for a subset K ⊂ Ω̄. We assume the coefficient tensor Aε to be
symmetric and positive definite (uniformly in ε),

Aε
i j = Aε

ji, a. e. on Ω, (2.2)

α|ξ |2 6
d

∑
i, j=1

Aε
i jξiξ j 6 β |ξ |2, a. e. on Ω, ξ ∈ Rd , (2.3)

with constants α,β ∈ R+, so that (2.1) admits a unique solution.
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We will not make any strong assumptions on Aε —only the weak conditions
given above and Lipschitz-continuity (with ε-dependent constant) as stated in Sec-
tion 2.4. Especially, we allow Aε to contain pronounced heterogeneous behavior in
Ω (e.g. by having micro structures with different, space dependent periodicities, or
by exhibiting multiscale features only in a specific part of the domain).

Throughout this paper we assume that we deal with a fixed choice of coefficients
Aε , i. e. we are not concerned with the limit ε → 0 (for ε being interpreted as a
scaling parameter). Nevertheless, the ε is kept as a superscript to indicate oscillating
coefficients (and functions).

2.1. The effective problem

In order to be able to adapt model parameters separately from the discretization
it is necessary to introduce an abstract notion of a model. In context of the math-
ematical homogenization theory (cf. Allaire [6]), Bensoussan et al. [15], and Cior-
anescu & Donato [24] for the elliptic problem (2.1) a natural starting point is the
following homogenized equation: Find u0 ∈ H1

0 (Ω) s. t.(
A0

∇u0,∇ϕ
)
=
(

f ,ϕ
)
∀ϕ ∈ H1

0 (Ω) , (2.4)

where A0 is an effective tensor whose values are determined by local cell problems
(cf. Allaire [6]). In the heterogeneous case the matrix A0 is a function depending
on x; A0 ∈ L∞ (Ω)d×d . This space dependency has to be discretized for a numer-
ical scheme. A possible choice (as employed by the HMM) is to start with a finite
element discretization of (2.4) and define a sampling problem for every quadrature
point in Ω for which A0(x) has to be evaluated.

However, this is exactly the type of coupling between (macroscale) discretiza-
tion and sampling process that we try to avoid. Consequently, in order to decouple
the sampling process from the coarse-scale discretization, it is necessary to abstract
this choice and incorporate it into an effective model.

Definition 2.1 (Effective model). Let Ω be a polygonal/polyhedral domain.
Then, an “effective model” is defined to be a pair

(
Tδ (Ω), Āδ

)
consisting of

a decomposition Tδ (Ω) of Ω into cells, e. g. quadrilaterals/hexahedra, called a
“sampling mesh” together with a function

Āδ : Ω−→ Rd×d (2.5)

with cell-wise constant values, more precisely, Āδ
∣∣
K is constant for every K ∈

Tδ (Ω) (cf. Fig. 1). We assume that Āδ fulfills (2.2) and (2.3).

The effective model
(
Tδ (Ω), Āδ

)
can be constructed by different means. For

the purpose of this paper, where we are interested in a posteriori error control a
computationally inexpensive reconstruction strategy is desired. In order to avoid the
solution of local sampling problems simple averaging schemes can be used:
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TH(Ω)

Tδ (Ω)

K

Th(Y δ
K )

Āδ
K ∈ Rd×d

Figure 1. The computational domain Ω together with the sampling mesh Tδ (Ω) consisting of
sampling regions K ∈ Tδ that are in turn discretized by a fine-scale mesh Th(K). The coarse mesh
TH(Ω) used for the final finite element discretization is a refinement of the sampling mesh Tδ (Ω).

Definition 2.2 (Averaging sampling strategies). Let {Y δ
K } be a set of sampling

regions, where every Y δ
K is associated with an individual sampling-mesh cell K ∈

Tδ (Ω). A sampling region Y δ
K is further assumed to be a simple translation and

rescaling of the unit cell Y (e. g., to the mid-point of K). An averaging process is
given by the “geometric mean value”

log Āδ
i j(K) :=

 
Y δ

K

logAε
i j(y)dy, for Aε

i j(K) 6= 0, Āδ
i j = 0, otherwise, (2.6)

or by the “harmonic mean value”

Āδ
i j(K)−1 :=

 
Y δ

K

1
Aε

i j(y)
dy, for Aε

i j(K) 6= 0, Āδ
i j = 0, otherwise. (2.7)

Remark 2.1. It is a well known fact that the arithmetic average

Āδ
i j(K) :=

 
Y δ

K

Aε
i j(y)dy, (2.8)

is not appropriate in practice: In case of classical homogenization theory it can be
shown, e. g., that in 1D the homogenization limit A0 is given by the harmonic mean
value (2.7) and that in higher space dimension the correctors are non-vanishing (cf.
Babuska [8] or Cioranescu & Donato [24]).

Remark 2.2. From a physical context it can be shown that, for a large class of
porous media, upscaled effective permeabilities lie between the arithmetic and har-
monic mean value (cf. Cardwell & Parsons [20]), i. e., transferred to scalar valued,
heterogeneous coefficients:( 

Y δ
K

1
Aε(y)

dy
)−1
6 A0 6

 
Y δ

K

Aε(y)dy. (2.9)
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Furthermore, the geometric average is a reasonable choice for a large class of log-
normally distributed permeabilities (cf. Warren & Price [49]). For a detailed discus-
sion as well as an overview of newer, more sophisticated averaging methods we
refer to Li et al. [36] and references therein.

Remark 2.3. In spirit of classical homogenization theory and the classical
HMM formulation, a reconstruction process involving local cell problems on sampling
regions can be defined:

Āδ
i j(K) :=

 
Y δ

K

Aε(x)
(
∇xωi(x)+ ei

)
·
(
∇xω j(x)+ e j

)
dx, (2.10)

where the ωi ∈ H̃1
per(Y

δ
K ) are solutions of

ˆ
Y δ

K

Aε(x)
(
∇xωi(x)+ ei) ·∇ϕ(x)dx = 0 ∀ϕ ∈ H̃1

per(Y
δ
K ). (2.11)

In order to avoid a reduction in regularity the patch-wise constant (globally
discontinuous) coefficients Āδ can be further post-processed to yield a globally
continuous function:

Definition 2.3 (Post-processing). Let V δ (Ω) be the space of d-linear finite
element functions associated with the sampling mesh Tδ (Ω). We define Aδ ∈
V δ (Ω)d×d with the help of an interpolation of Clement-type (cf. Clement [25] and
Scott & Zhang [46]): At each nodal point xi of Tδ (Ω) , we set

Aδ (xi) :=
∑K∈Ki Āδ (K) |Ki|

∑K∈Ki |Ki|
, (2.12)

where Ki is the set of all cells K ∈ Tδ (Ω) with xi ∈ K̄.

With the help of the effective model
(
Tδ (Ω),Aδ

)
, we define a corresponding

effective problem as follows: Find uδ ∈ H1
0 (Ω) s. t.

(Aδ
∇uδ ,∇ϕ) = ( f ,ϕ) ∀ϕ ∈ H1

0 (Ω) . (2.13)

Remark 2.4. The post-processed, continuous coefficient function Aδ ensures
that uδ ∈ H2 (Ω) what will be used in the a priori error estimation to shorten the
discussion. From a numerical standpoint it turns out that directly using Āδ instead
of Aδ yields better results, see the discussion in Section 4.
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2.2. The semi-discretized problem

A numerical evaluation of the sampling processes (2.8), (2.6), (2.7), or (2.11), intro-
duces quadrature and discretization errors on the fine (sampling) scale that have to
be taken into account. Therefore, we denote such a numerically computed, effective
model with a global discretization parameter h and a sequence {hK}K∈Tδ (Ω) of local
discretization parameters for each sampling region Y δ

K . We define hK to denote the
refinement level of a fine-scale triangulation Th(Y δ

K ) of Y δ
K , and h to be the max-

imum of the hK . With the help of the meshes Th a summed quadrature rule Qh,K

on Y δ
K is introduced:

Definition 2.4 (Summed quadrature rule). Given a base quadrature rule Q̂
on the reference sampling cell Y with support points {x̂i}i and weights {qi}i and
denoting by TK̃ the transformation TK̃ : Y −→ K̃ for K̃ ∈ Th(Y δ

K ), we define a
“summed quadrature rule” on K by

Qh,K( f ) := ∑
K̃∈Th(Y δ

K )

|K̃|Q
(

f ◦TK̃
)
= ∑

K̃∈Th(Y δ
K )

|K̃|∑
i

qi ( f ◦TK̃)(x̂i). (2.14)

With this notation, in correspondence to (2.8), (2.6) and (2.7), we define the nu-
merically computed, effective model

(
Tδ (Ω), Āδ ,h

)
by one of the following options:

Āδ ,h
i j (K) := |Y δ

K |−1Qh,K
(
Aε

i j(y)
)
, (2.15)(

Āδ ,h
i j (K)

)−1 := |Y δ
K |−1Qh,K

( 1
Aε

i j(y)

)
, (2.16)

log Āδ ,h
i j (K) := |Y δ

K |−1Qh,K
(

logAε
i j(y)

)
dy. (2.17)

Remark 2.5. In case of the homogenization scheme (2.10), an additional fine-
scale discretization has to be taken into account. Choosing a discrete fine-scale space
V h(Y δ

K )⊂ H̃1
per(Y

δ
K ) associated with a mesh Th(Y δ

K ) of Y δ
K , we set

Āδ ,h
i j (x) := |Y δ

K |−1Qh,K
(
Aε(x)

(
∇xω

h
i (x)+ ei

)
·
(
∇xω

h
j (x)+ e j

))
, (2.18)

where

Qh,K
(
Aε(x)

(
∇xωi(x)+ ei) ·∇ϕ

)
= 0 ∀ϕ ∈V h(Y δ

K ). (2.19)

Finally, introducing a fine-scale discretization for the sampling process leads us
to the following semi-discretized problem: Find uδ ,h ∈ H1

0 (Ω) s. t.

(Aδ ,h
∇uδ ,h,∇ϕ) = ( f ,ϕ) ∀ϕ ∈ H1

0 (Ω) . (2.20)

The well-posedness and a priori convergence of problem (2.20) will be established
in Section 2.4.
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2.3. The fully discretized problem

As the last step, we introduce a coarse mesh TH(Ω) of Ω and an associated finite
element space VH(Ω)⊂H1

0 (Ω) for the numerical approximation of the macroscale
problem (2.20). Then the fully discrete problem reads as follows: Find U ∈VH(Ω)
s. t.

(Aδ ,h
∇U,∇ϕ

H) = ( f ,ϕH) ∀ϕ
H ∈VH(Ω). (2.21)

In summary, we have established a framework that explicitly decouples all different
error sources, cf. Fig. 2.

uε

Aε

uδ

modeling error

Āδ ,Aδ

uδ ,h

microscale
discr. error

Āδ ,h,Aδ ,h

U

macroscale
discr. error

Figure 2. The interplay of the different sources of error ranging from the solution uε of the full
model problem (2.13), over the solutions uδ and uδ ,h of the auxiliary problems (2.13) and (2.20), to
the solution U of the fully discretized problem (2.21).

Remark 2.6. In Oden & Vemaganti [39,40,41] a similar modeling framework
is considered, which can be regarded as a simplification of the above scheme by (i)
neglecting fine-scale discretization errors (discussed in Section 2.2) and assuming
uδ ≡ uδ ,h, and (ii) by linking sampling and coarse-grid discretization, i. e., setting
Tδ = TH .

2.4. Well-posedness

In this subsection, we briefly discuss well-posedness and a priori convergence of
the method. We stress the point that only mild a priori assumptions are made for Aε

and thus the results of this subsection are solely stated for completeness to ensure
effectivity. The efficiency of the method is solely based on the a posteriori error
analysis stated in the next section.

As the primary goal of the following short discussion is to ensure well-posedness
we prove a priori convergence only for the case of uniformly refined discretization
parameters. We thus fix the notation δK , HK , and hQ to denote the local cell size of
a cell K ∈ Tδ (Ω), K ∈ TH(Ω), or Q ∈ Th(K), with K ∈ Tδ (Ω), respectively. The
parameters δ , H, and h shall be defined as the corresponding maximum over all
local cell diameters.

The following assumptions are made:
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(A1) Aε ∈ L∞ (Ω)d×d is Lipschitz continuous with a possibly ε-dependent L-
constant:

‖Aε(y)−Aε(x)‖6 C(ε)‖y− x‖. (2.22)

(A2) Ω is a polygonal/polyhedral domain and all meshes involved in the multiscale
method, Tδ (Ω), TH(Ω), {Th(Y δ

K ),K ∈ Tδ (Ω)}, satisfy the following stand-
ard regularity conditions (cf. Ciarlet [23] or Brenner & Scott [18]):

– Structural regularity:
⋃

K = Ω, and every intersection Ki ∩K j, i 6= j ,
is empty, a vertex, an entire edge, or an entire face.

– Uniform shape regularity: There exists C ∈ R+, such that

‖det∇TK‖+‖det∇T −1
K ‖6C, (2.23)

uniformly for all cells K of all families of meshes. Hereby, TK : Y −→
K denotes a d-linear transformation of a unit cell Y onto K. This al-
lows for decompositions of Ω̄ consisting of (closed and convex) tri-
angles/tetrahedra or quadrilaterals/hexahedra.

The ε-dependent coefficient C(ε) in (A1) can range from no ε-dependence at
all, i. e. C(ε) = 1, over to bad exponents, typically C(ε) = ε−0.5 , or C(ε) = ε−1.
Usually strong a priori conditions on Aε like periodicity assumptions (to apply clas-
sical homogenization results), or on the type of reconstruction process (e. g. H1-
orthogonality) are done to control this coefficient.

However, for the purpose of this paper that centers around a posteriori control
of discretization and model parameters we deliberately do not impose any such a
priori assumption. In contrast, we assume that we deal with a fixed choice of ε (that
might be very small and varying in space) such that a typical length scale of fluctu-
ations emerges, that—in the worst case—has to be resolved in full. The aim is now
to achieve a significant computational saving (of several orders of magnitude) by
means of adaptive discretization and model control compared to such a hypothetical
full resolution.

Remark 2.7. We note that there is no requirement about “size regularity” of
the meshes in order to allow for local mesh adaptation. Further, to ease local mesh
refinement the regularity assumption (A2) can be relaxed to allow for “hanging
nodes”, usually only one per edge or face, where the corresponding degrees of free-
dom are eliminated by linear interpolation between neighboring “regular” nodes (cf.
Carey & Oden [21] or Becker & Braack [11]).

With this prerequisites at hand, the next proposition follows immediately:
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Proposition 2.1. Under above assumptions all intermediate problems, (2.13)
for uδ , (2.20) for uδ ,h, and (2.21) for U, are well-posed. Due to the fact that Aδ ,h is
a continuous and patch-wise d-linear interpolation the bound ‖Aδ ,h‖W 1,∞(Ω) 6C(δ )

is available, where C(δ ) generally behaves like 1/δ . Thus,

‖uδ ,h‖H2(Ω) 6C(δ )‖ f‖. (2.24)

Proposition 2.2. Under the above assumptions there holds the error estimates

‖uδ −uε‖H1(Ω) 6C(ε)δ , (2.25)

‖uδ ,h−uδ‖H1(Ω) 6C(ε)h, (2.26)

‖U−uδ ,h‖+H ‖∇(U−uδ ,h)‖6C(δ )H2 ‖ f‖. (2.27)

Proof. The first two statements follow immediately from

‖Aδ −Aε‖ 6 C(ε)δ , ‖Aδ ,h−Aδ‖ 6 C(ε)h. (2.28)

The last statement is known from the standard a priori error analysis for finite ele-
ment methods (see Ciarlet [23]). The independence of C(ε) of the other parameters
follows from Proposition 2.1. �

3. A posteriori error analysis

In this section, we derive an a posteriori error estimate for our multiscale scheme
within the framework of the Dual Weighted Residual (DWR) method of Becker &
Rannacher [12,13,14]. Hereby, a so called dual problem is solved that is defined in
terms of the coefficients Aε and a quantity of interest represented by a functional
value j(uε). The goal of this discussion is the derivation of separate a posteriori
error indicators for all sources of error—the discretization errors on the macro- and
microscale, as well as the model error.

A fundamental difficulty that has to be taken care of arises from the fact that in
the case of the elliptic model problem the computation of the solution to the dual
problem is of the same complexity as that of the primal problem. Thus, a computa-
tionally cheap, but still reasonably good approximation is needed.

Remark 3.1. A similar approach has been used by Oden & Vemaganti [39,40,41],
Romkes & Moody [45], and Braack & Ern [16] in order to estimate model errors.

3.1. Error identity

Let j ∈ H−1(Ω) be a linear, continuous functional on H1
0 (Ω) and suppose that a

quantity of interest is given by 〈 j,uε〉, where 〈·, ·〉 denotes the duality pairing on
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H−1(Ω)×H1
0 (Ω) . We define two dual problems, a “full” and a “reduced” one as

follows: Find zε ∈ H1
0 (Ω) and zδ ∈ H1

0 (Ω), s. t.(
Aε

∇ϕ,∇zε
)
= 〈 j,ϕ〉 ∀ϕ ∈ H1

0 (Ω) , (3.1)(
Aδ

∇ϕ,∇zδ
)
= 〈 j,ϕ〉 ∀ϕ ∈ H1

0 (Ω) . (3.2)

Both dual problems are well posed and admit unique solutions. In the following, we
require the assumptions of the preceding sections to be satisfied and use the notation
introduced above.

First, a straightforward calculation leads to the following basic result.

Proposition 3.1 (Error identity). There holds the error representation

〈 j,uε〉−〈 j,U
〉
=
[
〈 j,uδ 〉−〈 j,U〉

]
+
[
〈 j,uε〉−〈 j,uδ 〉

]
=
[
( f ,zδ )− (Aδ ,h

∇U,∇zδ )
]
+({Aδ ,h−Aδ}∇U,∇zδ )

+({Aδ−Aε}∇uδ ,∇zε),

=: ϑ
H +ϑ

h +ϑ
δ ,

(3.3)

where ϑ H is a residual on the macroscale, ϑ h takes the form of a residual on the
microscale and ϑ δ has the character of a model error.

Next, we derive representations of the error estimators ϑ H , ϑ h, and ϑ δ , which
can be evaluated numerically.

Proposition 3.2 (Error estimators and indicators). The macroscale error es-
timator ϑ H allows the representation:

ϑ
H = ∑

K∈TH(Ω)

η
H
K ,

η
H
K := ( f +∇ ·Aδ ,h

∇U,zδ −ϕ
H)K− (1

2 [n ·A
δ ,h

∇U ]∂K ,z
δ −ϕ

H)∂K ,

(3.4)

for arbitrary ϕH ∈VH(Ω). Hereby, [ . ]∂K denotes the jump across the inter-element
boundary ∂K and n is the outward unit normal. The microscale error estimator is
given by

ϑ
h = ∑

K∈Tδ (Ω)

η
h
K ,

η
h
K :=

(
{Aδ −Aδ ,h}∇U,∇zδ

)
K .

(3.5)

Proof. Equation (3.4) immediately follows by virtue of Galerkin orthogonality
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and by cellwise integration by parts:

ϑ
H = ∑

K∈TH(Ω)

(
f ,zδ −ϕ

H)
K−

(
Aδ ,h

∇U,∇zδ −∇ϕ
H)

K ,

= ∑
K∈TH(Ω)

(
f +∇ ·Aδ ,h

∇U,zδ −ϕ
H)

K−
(1

2 [n ·A
δ ,h

∇U ]∂K ,z
δ −ϕ

H)
∂K .

The equation (3.5) is obvious. �

The residual-type error estimators ϑ H and ϑ h are well behaved, i. e., they are
uniformly bounded in powers of H and h, respectively. In contrast to the macroscale
discretization indicator its microscale pendant only depends on the approximation
order of the quadrature rule used.

Proposition 3.3. The macroscale and microscale error estimators ϑ H and ϑ h

as well as their local indicators ηH
K and ηh

K admit the asymptotic estimates

|ϑ H |6 ∑
K∈TH(Ω)

|ηH
K |6C(δ )H, (3.6)

|ϑ h|6 ∑
K∈Tδ (Ω)

|ηh
K |6C(ε)h. (3.7)

Proof. (i) By definition using Galerkin orthogonality, there holds

|ϑ H |= |( f ,zδ )− (Aδ ,h
∇U,∇zδ )|

= |(Aδ ,h
∇uδ ,h,∇(zδ −πhzδ ))− (Aδ ,h

∇U,∇(zδ −πhzδ ))|
6C‖Aδ ,h‖L∞(Ω)‖∇(uδ ,h−U)‖‖∇(zδ −πhzδ )‖.

Here, πhzδ ∈VH(Ω) denotes a generalized nodal interpolation of zδ , which is stable
with respect to the H1 norm (cf. Scott & Zhang [46]) and satisfies the error estimate

‖zδ −πhzδ‖+H‖∇(zδ −πHzδ )‖6CH‖zδ‖H1(Ω). (3.8)

We further have available the bound ‖Aδ ,h‖L∞(Ω) 6C(δ ) and the a priori estimate
(2.2),

‖U−uδ ,h‖+H ‖∇(U−uδ ,h)‖6C(δ )H2. (3.9)

Combining the foregoing estimates yields the result

|ϑ H |6C(δ )H. (3.10)

The full estimate involving the absolute values |ηH
K | can be shown by standard tech-

niques from finite element a posteriori error analysis (cf. Verfürth [47]). We omit the
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details.
(ii) The estimate (3.7) is an immediate consequence of Proposition 2.2 and its proof,
where the fact was used that ‖Aδ ,h−Aδ‖L∞(Ω) is bounded with the respective con-
vergence order. �

Remark 3.2. An alternative way of localizing the global residual term ϑ H ,
which is cell vertex-oriented and avoids the computation of jumps of derivatives
across inter-element boundaries, has been proposed in Braack & Ern [16] (see also
Richter&̇ Wick [44]).

Now, based on the definition of ϑ δ define local model-error indicators:

ϑ
δ = ∑

K∈Tδ (Ω)

η
δ
K ,

η
δ
K :=

(
{Aε −Aδ}∇uδ ,∇zε

)
K .

(3.11)

Remark 3.3. Without assuming any additional structural properties of the func-
tional j to hold true, the following basic convergence result (in spirit of Proposi-
tion 2.2) for the effectivity of the model error estimator can be shown:

|ϑ δ |6 ∑
K∈Tδ (Ω)

|ηδ
K | 6 ∑

K∈Tδ (Ω)

C(ε)‖∇zε‖K δ 6 C(ε)δ . (3.12)

The above estimate is too pessimistic in practice. The key point of the whole a pos-
teriori approach formulated in this section is the fact that the model error indicator
ηδ

K =
(
{Aε−Aδ}∇uδ ,∇zε

)
K contains the dual solution as a weighting factor. Thus,

for a localized functional, where zε is of Green’s function type, the bad error con-
stant C(ε) is only present in a small region that needs to be resolved in full (see the
numerical results given in Section 4).

3.2. Practical evaluation of the error indicators

The residual-type error indicators ηH
K and ηh

K can be evaluated directly by standard
techniques. A straightforward method is to replace zδ−ϕH and Aδ in (3.4) or (3.5)
by a higher order approximation. Given the fact that for the evaluation of ηh

K an
approximation of Aδ is necessary, we propose the following strategy.

Definition 3.1 (Approximate discretization-error indicators). We denote by
Āδ ,h/2 the numerically computed, effective coefficient with respect to the finer
sampling mesh {Th/2(Y δ

K ) : K ∈ Tδ (Ω)} and define Z̃ ∈V H(Ω) to be the solution
of

(Āδ ,h/2
∇ϕ

H ,∇Z̃) = 〈 j,ϕH〉 ∀ϕH ∈V H(Ω). (3.13)
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Further, we denote by π
(2)
2H the patchwise interpolation to a higher-order finite ele-

ment space (d-quadratics) on a once coarsened mesh T2H(Ω). Then, the approxim-
ate error indicators are defined by

η̃
H
K := ( f ,π(2)

2H Z̃− Z̃)K− (Aδ ,h
∇U,∇(π

(2)
2H Z̃− Z̃))K , (3.14)

η̃
h
K := ({Āδ ,h/2−Aδ ,h}∇U,∇zδ )K . (3.15)

Remark 3.4. The replacement of zδ−πHzδ by π
(2)
2H Z̃−Z̃ is a well known post-

processing technique (cf. Becker & Rannacher [14]). It usually leads to a slight re-
duction in the accuracy of the estimator (i. e. the quantitative prediction of the es-
timator). However, the qualitative properties of the resulting error indicators are
preserved.

3.2.1. Evaluation of the model error. The model-error indicators ηδ
K are of fun-

damentally different nature than the residual-type indicators ηH
K and ηh

K , because
they are defined in terms of the solution zε of the full dual problem (3.1). A global
approximation of zε is (in the case of the elliptic model problem) of the same com-
plexity as the primal problem itself. Consequently, approximating zε directly is
practically infeasible. Different strategies have been used to circumvent this prob-
lem:

– A straightforward idea (e. g. used by Braack & Ern [16]) is to use the homo-
genized dual solution zδ directly instead of zε in order to estimate model
errors. This approach is justified if a qualitative—not a quantitative—error
estimator is needed, because a critical under- or overestimation of the model
error has to be expected. This can be explained by the following heuristic
reasoning: The indicator ηδ

K corresponds to a moment of second order,

η
δ
K = ((Aε −Aδ )︸ ︷︷ ︸

fluct.

∇uδ , ∇zε︸︷︷︸
fluct.

)K , (3.16)

whereas η̃δ
K defined in terms of zδ only corresponds to a moment of first

order,

η̃
δ
K = ((Aε −Aδ )︸ ︷︷ ︸

fluct.

∇uδ ,∇zδ )K . (3.17)

– Oden & Vemaganti [39,40,41] introduced a refined version of the above strategy
that uses an additional, cellwise inverse of the coefficients, Id−

(
Aε
)−1Aδ , in

the estimation of the model-error indicator. This results in an estimate of the
form:

|〈 j,uδ 〉−〈 j,uε〉|6 C ∑
K∈Tδ (Ω)

∣∣(∇uδ , [Id− (Aε)−1Aδ ]∇zδ
)

K

∣∣+R, (3.18)
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with a (not directly computable) residual-type remainder R.

– An alternative post-processing of zδ has been proposed by Romkes & Moody
[45], in which the global dual problem (3.1) is replaced by entirely local
Neumann problems solely defined on the respective sampling cell: Find
ẑε ∈ H1(K) s. t.

(Aε
∇ϕ,∇ẑε) = 〈 j,ϕ〉 ∀ϕ ∈ H1(K). (3.19)

This approach is computationally rather expensive and does not provide in-
formation about the global error dependencies required within the DWR
method.

Remark 3.5. It can be expected, that the approximate model-error indicators
η̃δ

K defined in terms of the reduced dual solution zδ still contain enough qualitat-
ive information for a (stable) model adaptation strategy that does not need a good
quantitative estimate. This is similar to the case of the classical DWR method, where
the dual problem is defined on the same (adapted) mesh as the primal problem (cf.
Becker & Braack [11]).

In summary, we use the following numerical approximation of the model-error
indicators.

Definition 3.2 (Approximate model-error indicators). Let Aδ ,h/2 be the ap-
proximate effective coefficient of Definition 3.1 and let Z̃ be the corresponding
solution of the (discrete) dual problem (3.13). Then, the approximate model-error
indicators are defined by

η̃
δ
K := ({Aδ ,h/2−Aε}∇U,∇Z̃)K . (3.20)

Remark 3.6. A local correction η̃δ
K,rec of η̃δ

K , in spirit of the third approxima-
tion strategy described above, is given by

η̃
δ
K,rec := ({Aδ ,h/2−Aε}∇U,∇Z̃K)K , (3.21)

with a finite element approximation Z̃K solving the local reconstruction problem:
Find Z̃k ∈V h(K) s. t.

(Aε
∇ϕ,∇Z̃ +∇Z̃K)K = 〈 j,ϕ〉 ∀ϕ ∈V h(K). (3.22)

3.3. Simultaneous adaptation of model and discretization

The a posteriori error indicators derived in the preceding section can be used in a
strategy for simultaneous discretization and model adaptation. For the sake of sim-
plicity, we only consider homogeneous meshes Th(Y δ

K ) of the sampling regions Y δ
K
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and adapt the local finescale discretization solely by the choice of hK (denoting the
uniform refinement parameter of Th(Y δ

K ) . In contrast, the macroscale discretization
is allowed to be a family of locally refined meshes according to Remark 2.7.

For the model adaptation two fundamentally different possibilities of improving
the effective model

(
Tδ (Ω),Aδ

)
have to be considered:

– Model switching: If the local model-error indicator ηδ
K is large, locally switch

to a better, but more expensive model. In principle, such an approach could
involve several increasingly expensive model formulations of the microscale.
In its simplest incarnation the model switching is between a (single) effective
cheap model Aδ

K and the full model Aε(x) on K.

– Adapt the discretization, i. e., the choice of the sampling mesh Tδ (Ω) while
keeping the microscale model.

Remark 3.7. The first strategy is equivalent to the region of influence method
formulated by Oden & Vemaganti [39,40]. Hereby, the model indicators η̃δ

K are used
to (iteratively) construct a connected subdomain I ⊂ Ω consisting of K ∈ Tδ (Ω)
with large modeling errors. On the so-called region of influence I a correction with
the full model is computed: Find Ucorr ∈V h(I) s. t.

(Aε(∇U +∇Ucorr),∇ϕ) = ( f ,ϕ) ∀ϕ ∈V h(I), (3.23)
Ucorr = 0 on ∂ I. (3.24)

Remark 3.8. In case of the “digital” model switching strategy between reduced
and full model both strategies are actually equivalent! This is due to the fact that all
averaging strategies in Definition 2.2 can be regarded as an (expensive) quadrature
rule. Therefore, a local refinement of Tδ (Ω) is at some point nothing else than a full
resolution in the sense of the first strategy. This claim also holds for homogenization
strategies with local cell problems. It can be shown that the corrector defined by the
local cell problem vanishes asymptotically for δ � ε and under assumption (A1),
i. e., also homogenization processes degrade in this sense to mere quadrature rules.

Remark 3.9. A fundamentally different approach in which the model-error in-
dicators ηδ

K will be used to directly enhance the effective model in a model optim-
ization framework will be the subject of a forthcoming paper.

In order to control the microscale discretization when adapting the sampling
region, the local mesh Th(K) of a sampling region K ∈ Tδ (Ω) involved has to
be kept at the same level of resolution. More precisely, we choose the following
approach:

– If ηδ
K is large for some K ∈ Tδ (Ω), split K into 2d sampling regions Ki,

correspondingly shrink the sampling region Y δ
K by a factor of 2−d and set
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hKi = hK – this amounts to a coarsening of one level if expressed in terms of
number of grid refinements (c. f. Fig. 3).

Figure 3. Refinement of a sampling cell K and the associated sampling region Y δ
K . The degree of

microlevel resolution is preserved.

3.3.1. The adaptation algorithm in detail. Let the goal be to reach a prescribed
error tolerance TOL in a finite number of adaptation cycles. To achieve this, the ad-
aptation algorithm based on the a posteriori error indicators derived above consists
of the following steps.

Step 1. Start with initial meshes TH(Ω), Tδ (Ω),
{
Th(Y δ

K ),K ∈ Tδ (Ω)
}

and
choose scaling parameters αH , αh, and αδ .

Step 2. Compute Aδ ,h and Āδ ,h/2 according to one of the strategies in Definition 2.4
and compute U and Z̃ with the help of (2.21) and (3.13), respectively.

Step 3. Compute the error estimators and local indicators

ϑ̃
H = ∑

K∈TH(Ω)

η̃
H
K , ϑ̃

h = ∑
K∈Tδ (Ω)

η̃
h
K , ϑ̃

δ = ∑
K∈Tδ (Ω)

η̃
δ
K

according to (3.14), (3.15), and (3.20). Optionally, determine a local enhancement
ϑ̃ δ

rec = ∑K∈Tδ (Ω) η̃δ
K,rec following Remark 3.6.

Step 4. If |ϑ̃ H + ϑ̃ h + ϑ̃ δ |6 TOL, then stop. Otherwise continue.

Step 5a. Based on the local error indicators |ην
K | , fo each source of error inde-

pendently select cells for refinement. This can either be done by selecting a fixed
fraction of cells with highest (absolute value) |ην

K | . Alternatively, a more sophistic-
ated marking strategy based on local optimization is possible (cf. Braack & Richter
[17]).

Step 5b. In order to balance the adaptation, not all of the selected cells are used but
only the fraction

αν |ϑ̃ ν |
αH |ϑ̃ H |+αδ |ϑ̃ δ |+αh |ϑ̃ h|

, (3.25)

where αν are fixed scaling parameters.
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Step 6a. Microlevel refinement. Set hK ← hK/2 for all selected cells K ∈ Tδ (Ω).

Step 6b. Sampling refinement. In order to maintain TH(Ω) ⊃ Tδ (Ω), addition-
ally mark every macro cell K ∈ TH(Ω) for refinement that is equal to a selected
sampling cell K of Tδ (Ω). Finally execute refinement: Split each selected sampling
cell K into a finite number of children cells Ki, associate new sampling regions Y δ

Ki

with half edge length (in 2D) and discretizations ThKi
(Y δ

Ki
) with hKi = hK , cf. Fig. 3.

Step 6c. Macrolevel refinement. Split each selected macrolevel cell K ∈TH(Ω) into
a finite number of child cells (while ensuring that TH(Ω)⊃ Tδ (Ω)).

Remark 3.10. In cases where the post-processed coefficient Aδ is used instead
of the piecewise constant variant Āδ the marking strategy for the sampling grid in
step 6b can be improved by additionally selecting all sampling cells for refinement
that are part of the interpolation patch of the originally selected cells (and therefore
influence the post-processed coefficients).

4. Numerical results

This section presents results of some computational tests for illustrating the per-
formance of the adaptation algorithm described above. We consider the elliptic
boundary value problem (2.1) with two different types of micro structures. The first
example comprises an artificial, locally periodic and exponentially scaled coefficient
with an additional quadratic scaling towards the corners. In the second example a
log-normally distributed permeability with Gaussian correlation is considered. In
both cases the quantity of interest is given by an approximate point evaluation of
the derivative of uε in x2-direction. The adaptation algorithm is compared to both,
traditional finite element approximation as well as the HMM variant described in
Remark 2.3. All calculations have been performed with the finite element library
deal.II [9]. The stochastic permeability has been generated with the help of the
QuantIm library [48].

Further, all computations were done using the averaged and patchwise constant,
effective coefficient Āδ ,h directly instead of its post-processed counterpart. It turns
out that the Clement-type post-processing of the sampled, effective coefficient—
although necessary for the theoretical analysis (in order to not loose regularity and
therefore convergence order on the macroscale)—produces less favorable numerical
results. The reason for this lies in the fact that the post-processing step introduces
a higher degree of non-locality where the effective value on a given sampling mesh
cell is in fact influenced by the sampling process on a patch of (usually) 8 neigh-
boring cells. Therefore, an unfavorable higher degree of refinement of the sampling
mesh is necessary to improve such a post-processed effective model. Further, the
singularities introduced in patch corners due to patchwise constant coefficients are
actually well controlled: In regions, where they matter a high refinement of the mac-
roscale is already necessary, whereas in other regions the small weight (due to the
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dual solution) prevents unnecessary refinement.

4.1. Periodic structure

In a first example, we examine the performance of the described sampling process
for an artificial periodic structure. This is done in a series of small tests that demon-
strate specific aspects of the sampling algorithm and the test case considered. Let
Ω be the slit domain as depicted in Fig. 4 and let the quantity of interest be given
by a point evaluation of the derivative in x2-direction:〈

j,ϕ
〉

:= ∂x2ϕ(x̂), x̂ = (0.25, 0.25). (4.1)

This specific quantity of interest is chosen because it is equally influenced by macro-
scale and microscale behavior. Since the corresponding functional (derivative Green
function) is not in H−1(Ω), a regularized approximation depending on the local
mesh width Hmin is used in our calculations (for a discussion of this approach see
Becker & Rannacher [14] or Bangerth & Rannacher [10]).

(a)

I

II III

IV

(b)

Figure 4. (a) The computational domain Ω. The evaluation point of the quantity of interest is located
in the middle of quadrant I. The coefficient Aε has a strong oscillation in quadrants II and IV and is
smooth in III. (b) A logarithmically scaled intensity plot of the trace of the coefficient matrix Aε of
the first numerical example, i. e. log10(1/3× tr(Aε )).

We choose Aε to be a permeability with blockwise different character (cf.
Fig. 4):

Aε(x) = Id γ


exp(3) in quadrant I and quadrant III,

exp
(
6(1− x1)x2 [cos(π x̂1)+ cos(π x̂2)]

)
in quadrant II,

exp
(
6(1− x2)x1 [cos(π x̂1)+ cos(π x̂2)]

)
in quadrant IV.

(4.2)

Hereby, γ = 0.001 and the rescaling x̂i is defined as x̂i := bxi/εc−1/2. This choice
allows us to simultaneously test different aspects of the adaptation algorithm:

– The evaluation of the derivative in quadrant I should enforce a local refine-
ment of the macroscale discretization without an adaptation of microscale and
sampling parameters.
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– Discretization and sampling parameters for quadrant III should remain coarse
because no heterogeneity is present.

– The other two quadrants II and IV have a pronounced heterogeneous fine scale
consisting of a periodic substructure and a quadratic scaling of the exponent
towards the corners. Quadrant II has a higher influence on the quantity of
interest than quadrant IV. Therefore, a higher degree of model adaptation is
expected for quadrant II.

For the choice ε = 2−5 = 0.03125 a reference solution is computed by a direct
finite element approximation on a very fine mesh (16.8 · 106 degrees of freedom)
resulting in the reference values ∂x2uε

ref(x̂)≈ 1.699 and ‖uε
ref‖ ≈ 0.810.

4.1.1. Uniform and local refinement. The periodic microstructure exhibits a
strong influence on the macroscale behavior. In order to resolve this, a uniformly
high resolution is necessary. To exemplify this claim a (direct) finite element ap-
proximation with summed quadrature rule (2d-point Gauss quadrature) is employed
for uniform as well as local mesh refinement. The local refinement strategy is based
on the macroscale error indicators (3.14) but with (in the absence of an effective
model) Aδ ,h replaced by Aε . The results are shown in Tables 1 and 2. We note that
in case of uniform refinement (compared to the diffusion problem with smooth para-
meters) a very high resolution of 6.6 · 104 cells is needed to reach a relative error
of 5%, and 1.0 · 106 cells for a relative error of 1%. The local refinement strategy
shows almost no improvement compared to uniform refinement. The column next
to that for the L2-error norm contains the logarithmic reduction rate of the error. It
shows the typical order reduction which is to be expected for the given macroscopic
singularity and strong heterogeneity.

Table 1. Error development in L2 norm and quantity of interest for uniform refinement with a direct
finite element discretization (and high-order quadrature). The second column for the L2-error norm
contains the logarithmic reduction rate.

#macro L2 error |〈 j,uε−U〉|

1 024 2.60e-1 — 6.31e-1 (37%)
4 096 2.55e-1 0.03 6.21e-1 (36%)

16 384 1.24e-1 1.04 2.81e-1 (17%)
65 536 4.05e-2 1.62 8.62e-2 (5.1%)

262 144 1.20e-2 1.76 2.39e-2 (1.4%)
1 048 576 3.71e-3 1.69 6.64e-3 (0.4%)
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Table 2. Error development in L2 norm and quantity of interest for local refinement with a direct
finite element discretization (and high-order quadrature).

#macro L2 error |〈 j,uε−U〉|

1 1 024 2.60e-1 6.31e-1 (37%)
2 1 558 2.57e-1 6.24e-1 (37%)
3 2 479 2.52e-1 5.59e-1 (33%)
...

...
...

...
...

9 35 377 1.54e-1 1.06e-1 (6.2%)
10 93 331 1.30e-1 6.29e-2 (3.7%)
11 222 064 1.02e-1 3.10e-2 (1.8%)
12 568 201 6.77e-2 1.19e-2 (0.7%)

4.1.2. Model error of averaging schemes and HMM method. Next, in order to
determine the typical size of model errors for the test configuration, we examine
the different sampling strategies given in Definition 2.2 and the (modified) HMM
scheme according to Remark 2.3. Due to the known periodicity of Aε , we choose
Tδ (Ω) to be a uniform mesh with optimal spacing δ = ε = 2−5 and set the sampling
regions to Y δ

K = K. We choose a high resolution in the macroscale discretization
(2.6 ·105 cells) and microscale discretization (1.0 ·106 cells) to get an estimate for
the model error. The results are shown in Table 3.

The model error for the (modified) HMM is at around 1%, which is expected
for a periodic fine scale with a scale separation of around ε = 2−5. The geometric
averaging strategy performs comparably well for the periodic coefficient Aε with a
model error of around 6%. In contrast, the averaging strategy has a relative error
of 36%. This explains the poor performance of traditional local mesh adaptation
(without an effective model); the (wrong) arithmetic average enforces a strong non-
local mesh refinement. This is further evidenced by the fact that the error in the L2

norm for the simple arithmetic averaging scheme is almost one order of magnitude
larger than that of the geometric average or the HMM.

Table 3. Model error in L2 and H1 norm, and in the quantity of interest for the proposed sampling
schemes and the HMM.

strategy L2 error H1 error |〈 j,uε−U〉|

arithmetic averaging 2.55e-1 (31%) 3.21 6.25e-1 (36%)
geometric averaging 5.16e-2 (6.4%) 2.74 1.08e-1 (6.4%)
harmonic averaging 4.41e-1 (54%) 3.98 7.87e-1 (46%)
HMM 1.58e-2 (2.0%) 2.72 1.45e-2 (0.9%)

4.1.3. Adaptive sampling algorithm. As a last test for the periodic permeability,
we run the full adaptation algorithm and compare the resulting mesh refinement with
uniform and local refinement and the HMM. We choose the geometric averaging
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as base sampling strategy for the adaptive sampling algorithm. We start with a very
coarse macroscale and microscale discretization of 256 and 1 024 cells, respectively,
and 64 distinct sampling regions. The scaling parameters in the balancing step of the
adaptive algorithm are set to αH =αδ = 1 and αh = 10. This enforces slightly more
accuracy on the microscale. The initial microscale resolution is chosen in such a way
that the microstructure is coarsely resolved. The results of the adaptation process
are shown in Table 4 together with the intermediate values for the different error
estimators. A slight initial overestimation, Ieff > 1, where

Ieff :=

∣∣∣∣∣ ϑ̃ H + ϑ̃ h + ϑ̃ δ

〈 j,uε−U〉

∣∣∣∣∣ , (4.3)

mainly of the model error changes into a pronounced underestimation in the asymp-
totic refinement limit. Nevertheless, the qualitative character of the individual error
indicators is still well preserved. Fig. 5 shows the adapted meshes for cycle 6 (which
corresponds to 5% relative error): The macroscale discretization (Fig. 5a) is locally
refined at the point (0.25,0.25) in quadrant I (due to the choice of quantity of in-
terest) as well as where the sampling discretization enforces a local refinement. The
sampling discretization is adapted in quadrant II and IV, with significantly more re-
finement in quadrant II than in quadrant IV. The same observation holds true for the
microscale discretization.

Table 4. Refinement history, error in the quantity of interest and error estimator for the sampling
strategy with geometric averaging.

#macro #sampl. #micro |〈 j,uε−U〉| |ϑ H | |ϑ h| |ϑ δ | Ieff

256 64 1 024 9.04e-2 (11%) 3.61e-2 1.04e-1 9.99e-1 11.811
262 91 1 456 2.63e-1 (15%) 1.48e-1 1.80e-2 9.00e-1 2.929
385 217 1 696 2.13e-1 (13%) 9.87e-2 8.87e-3 9.05e-1 3.830
886 709 2 032 1.87e-1 (11%) 7.31e-2 5.76e-3 9.06e-1 4.489

2 803 2 620 4 180 1.61e-1 (9.5%) 4.83e-2 9.84e-4 3.36e-1 1.794
7 357 7 102 8 374 6.58e-2 (3.9%) 9.60e-3 2.23e-4 1.17e-1 1.633

17 749 17 407 18 355 3.12e-2 (1.8%) 5.29e-3 6.74e-5 5.25e-2 1.515
39 736 39 262 39 775 2.63e-2 (1.5%) 1.34e-2 1.46e-5 2.15e-2 0.310
89 911 88 675 89 056 1.11e-2 (0.7%) 5.48e-3 3.02e-6 9.06e-3 0.323

The adaptive sampling algorithm leads to a significant improvement in terms
of necessary refinement (on macro- and microscale) compared to the direct finite
element discretization and HMM (cf. Table 5). The values for the HMM are de-
termined with the help of the adaptive algorithm and a fixed sampling mesh in or-
der to provide a more sensible comparison than uniform refinement. From Table 5
it can be seen that the adaptive sampling is consistently better than uniform and
local refinement. This is mainly due to the fact that the geometric average allows
for a higher localization in the mesh adaptation than the arithmetic average, which
is involuntarily used in the classical finite element discretization. Compared to the
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adaptive HMM the adaptive algorithm needs significantly more cells for macro-
scale and sampling (compared to the fixed 1 024 sampling regions of the HMM).
However, the 3.0× 105 cells on the microscale correspond to 1 024 full sampling
problems in case of the HMM, where for the averaging scheme only a significantly
less expensive averaging procedure with 9.0×104 cells is necessary.

(a) (b) (c)

Figure 5. Refinement on cycle 6 (with 7 174 macro cells) on (a) the macroscale TH(Ω), (b) the
sampling discretization Tδ (Ω), and (c) on the microscale discretization

{
hK : K ∈ Tδ (Ω)

}
(logarith-

mically scaled).

Table 5. Refinement levels in number of cells on macro, micro and sampling discretization to achieve
at least (a) 5% and (b) 1% error.

(a) strategy #macro #micro #sampl. |〈 j,uε−U〉|
uniform 65 536 — — 8.62e-2 (5.1%)
local 35 377 — — 1.06e-1 (6.2%)

ad. sampl. 7 174 6 679 8 149 7.13e-2 (4.1%)

(b) strategy #macro #micro #sampl. |〈 j,uε−U〉|
uniform 1 048 576 — — 6.64e-3 (0.4%)
local 568 201 — — 1.19e-2 (0.7%)

HMM 19 330 302 896 1 024 1.55e-2 (0.9%)

ad. sampl. 93 245 89 017 89 500 1.12e-2 (0.7%)

4.2. Log-normally distributed permeability

In the second numerical example, we keep the computational domain Ω and the
quantity of interest, but replace the periodic coefficient Aε by a log-normally dis-
tributed permeability. The motivation behind this choice is that a large class of phys-
ically relevant permeabilities, such as occurring for example in ground-water flow,
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(a) (b)

(c) (d)

Figure 6. (a) Log-normally distributed permeability with Gaussian correlation shown in log-scale.
(b) The corresponding reference solution. (c) Solution for arithmetic averaging, and (d) for geometric
averaging.

exhibits a log-normal distribution (cf. Warren&̇ Price [49]).
In detail, we choose Aε to be

Aε(x) := γ exp(10g(x)/255) Id , (4.4)

where g(x) is an 8 bit grayscale picture (with integral values between 0 and 255)
with 1024×1024 pixels resolution (cf. Fig. 6). The grayscale picture is generated
using the QuantIm library [48]. It is a (discrete) Gaussian random field with an
additional Gaussian correlation with a correlation length chosen to be r = 0.0025.
Due to the small correlation length and exponential scaling, the permeability exhib-
its a strong influence on the macroscale. A computation with 16 · 106 degrees of
freedom results in a reference value of ∂x2uε

ref(x̂)≈ 1.168.

4.2.1. Model error of averaging schemes and HMM. Again, we examine the
different choices of effective models. Due to the absence of any good a priori know-
ledge on how to choose δ (except for the correlation length r = 0.0025), we set
Y δ

K := K and test for two different choices of δ , a coarse sampling mesh with
δ = 2−3 and a fine version with δ = 2−5. Once again, a high resolution in mac-
roscale discretization (2.62 · 105 cells) and microscale discretization (106 cells) is
chosen to get an estimate for the model error. Table 6 shows that for the log-normally
distributed permeability, none of the effective models reproduces the quantity of in-
terest (which is a localized point value) – every single effective model has a relative
error of 50− 100%. However, a clear difference becomes visible when looking at
the error in the L2 norm. Here, both, the geometric averaging and the HMM have
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a relative error of about 2%, whereas the arithmetic averaging is over one order of
magnitude worse. This is also clearly observable in the “picture norm”, cf. Fig. 6.

Table 6. Model error in L2 norm and in the quantity of interest for the different sampling schemes
and the HMM.

strategy δ = 2−3 δ = 2−5

L2 error |〈 j,uε−U〉| L2 error |〈 j,uε−U〉|
arithmetic 6.85e-2 (40%) 9.40e-1 6.77e-2 (40%) 9.37e-1
geometric 3.66e-3 (2.2%) 7.93e-1 2.58e-3 (1.5%) 7.60e-1
harmonic 1.21e-1 (71%) 5.55e-1 1.15e-1 (67%) 4.21e-1
HMM 2.87e-3 (1.7%) 7.93e-1 2.23e-3 (1.3%) 7.57e-1

4.2.2. Full adaptive algorithm. As the last numerical test, we perform a full ad-
aptation process with coarse initial macroscale discretization and coarse sampling
mesh. In contrast to the first numerical example, a high initial resolution of the mi-
croscale with about 106 cells is chosen. This is done in order to avoid unnecessary
refinement on macroscale and sampling, which turns out to happen if the micro-
scale resolution is not sufficiently good. Given the fact that in case of averaging
schemes a high microscale resolution does only introduce a high quadrature, such a
choice is still computationally acceptable. A slightly different scaling is chosen: We
set αδ = αh = 1 and enforce a higher accuracy on the macroscale discretization by
setting αH = 20. The results of the adaptation process are given in Table 7.

Table 7. Refinement history: error in the quantity of interest and error estimators for the adaptive
sampling strategy with geometric averaging.

#macro #sampl. #micro |〈 j,uε−U〉| |ϑ H | |ϑ h| |ϑ δ | Ieff

1 256 16 ≈ 106 8.09e-1 (70%) 1.07e-2 1.96e-13 2.14e-1 0.25
3 388 37 ≈ 106 7.94e-1 (68%) 7.56e-3 6.25e-15 3.14e-1 0.38
5 652 166 ≈ 106 7.75e-1 (66%) 6.08e-3 2.98e-16 9.84e-2 0.13
7 1 285 760 ≈ 106 5.22e-1 (45%) 1.22e-2 6.29e-15 2.12e-1 0.43
9 3 442 1 981 ≈ 106 1.78e-1 (15%) 2.13e-2 7.47e-14 5.26e-1 2.83

11 11 788 8 581 ≈ 106 1.77e-2 (1.5%) 1.14e-2 5.76e-13 2.59e-1 14.05
13 50 836 26 641 ≈ 106 2.10e-2 (1.8%) 1.37e-2 5.80e-13 1.55e-1 6.73
15 191 368 62 290 ≈ 106 1.61e-2 (1.4%) 9.66e-3 5.84e-13 9.24e-2 5.14
17 658 525 129 910 ≈ 106 1.25e-2 (1.1%) 5.29e-3 6.00e-13 4.68e-2 4.88

Compared to uniform and local refinement with a standard finite element dis-
cretization a significant saving can be observed for macroscale and sampling discret-
ization with a difference of almost two orders of magnitude in refinement (cf. Fig. 7
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(a) (b) (c)

Figure 7. Refinement on cycle 10 (that reaches 2% accuracy) on (a) the macroscale TH(Ω) and
(b) the sampling discretization Tδ (Ω). (c) shows a corresponding locally refined mesh to reach 2%
accuracy with a direct finite element discretization.

and Fig. 8). The huge saving is due to the fact that the geometric average allows for
a very localized refinement process in order to improve the accuracy in the quant-
ity of interest. With this, a relative error of around 2% can be reached with very
little coarse scale and sampling refinement. After that convergence stagnates and
the adaptive sampling algorithm “degenerates” to local refinement (cf. Fig. 8).

5. Conclusion

In this paper a heterogeneous multiscale finite element method for elliptic prob-
lems is derived within the general framework of the DWR method. An a posteri-
ori error analysis is presented for this scheme and independent error estimators
as well as localized refinement indicators are derived. This provides the basis of
a simultaneous adaptation algorithm for discretization and sampling. The proposed
method is tested numerically at two prototypical classes of permeabilities (with mild
and strong scale separation). A highly localized quantity of interest is chosen that
is influenced equally by (global) macroscale and (local) microscale behavior. The
sampling adaptation process shows good results in both cases with a significant
reduction in degrees of freedom compared to standard finite element approaches
and the classical HMM. Further, it turns out that (in analogy to the standard DWR
case) the dual solution can be approximated with a coarse approximation based on
the effective parameters. The qualitative character of the refinement indicators and
the quantitative character of the error estimators is still sufficient for effective error
control.

In principle, the derived error estimators allow for different sampling adaptation
strategies; main subject of this paper is a simple averaging scheme based on the
geometric mean value. A fundamentally different approach, in which the model-
error estimators are used to directly enhance the effective model within a model
optimization framework. will be the subject of a forthcoming paper.
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Figure 8. Performance plot showing the error in quantity of interest over macroscale discretization for
uniform and local refinement with a standard finite element discretization and the adaptive sampling
strategy with geometric averaging
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